FeniCS: visualización de elementos de alto orden

14

Acabo de empezar a jugar con FEniCS. Estoy resolviendo Poisson con elementos de tercer orden y me gustaría visualizar los resultados. Sin embargo, cuando uso plot (u), la visualización es solo una interpolación lineal de los resultados. Me sale lo mismo cuando salgo a VTK. En otro código con el que estoy trabajando, escribí un salida VTK que muestrearía elementos de orden superior para que realmente parecieran de orden superior en Paraview. ¿Hay algo como esto (o mejor) en FEniCS?

Truman Ellis
fuente

Respuestas:

12

Puede interpolar la solución en una malla más fina y luego trazarla:

from dolfin import *

coarse_mesh = UnitSquareMesh(2, 2)
fine_mesh = refine(refine(refine(coarse_mesh)))

P2_coarse = FunctionSpace(coarse_mesh, "CG", 2)
P1_fine = FunctionSpace(fine_mesh, "CG", 1)

f = interpolate(Expression("sin(pi*x[0])*sin(pi*x[1])"), P2_coarse)
g = interpolate(f, P1_fine)

plot(f, title="Bad plot")
plot(g, title="Good plot")

interactive()

Observe cómo puede ver el contorno de los triángulos P2 gruesos en el diagrama en la malla más fina.

Trazado de la función P2 en malla gruesa

Trazado de la función P2 interpolada a una función P1 en una malla fina

Anders Logg
fuente
8

He estado trabajando un poco en el refinamiento adaptativo para hacer el trabajo (ver el código a continuación). La escala del indicador de error con el tamaño de malla total y la variación total de la función de malla no es perfecta, pero puede ajustarla a sus necesidades. Las imágenes a continuación son para el caso de prueba 4. El número de celdas aumenta de 200 a aproximadamente 24,000, lo que puede ser un poco exagerado, pero el resultado es bastante bueno. La malla muestra que solo se han refinado las partes relevantes. Los artefactos que aún puedes ver son lo que los elementos de tercer orden en sí mismos no podrían representar con la precisión suficiente.

from dolfin import *
from numpy import abs


def compute_error(expr, mesh):
    DG = FunctionSpace(mesh, "DG", 0)
    e = project(expr, DG)
    err = abs(e.vector().array())
    dofmap = DG.dofmap()
    return err, dofmap


def refine_by_bool_array(mesh, to_mark, dofmap):
    cell_markers = CellFunction("bool", mesh)
    cell_markers.set_all(False)
    n = 0
    for cell in cells(mesh):
        index = dofmap.cell_dofs(cell.index())[0]
        if to_mark[index]:
            cell_markers[cell] = True
            n += 1
    mesh = refine(mesh, cell_markers)
    return mesh, n


def adapt_mesh(f, mesh, max_err=0.001, exp=0):
    V = FunctionSpace(mesh, "CG", 1)
    while True:
        fi = interpolate(f, V)
        v = CellVolume(mesh)
        expr = v**exp * abs(f-fi)
        err, dofmap = compute_error(expr, mesh)

        to_mark = (err>max_err)
        mesh, n = refine_by_bool_array(mesh, to_mark, dofmap)
        if not n:
            break

        V = FunctionSpace(mesh, "CG", 1)
    return fi, mesh


def show_testcase(i, p, N, fac, title1="", title2=""):
    funcs = ["sin(60*(x[0]-0.5)*(x[1]-0.5))",
             "sin(10*(x[0]-0.5)*(x[1]-0.5))",
             "sin(10*(x[0]-0.5))*sin(pow(3*(x[1]-0.05),2))"]

    mesh = UnitSquareMesh(N, N)
    U = FunctionSpace(mesh, "CG", p)
    f = interpolate(Expression(funcs[i]), U)

    v0 = (1.0/N) ** 2;
    exp = 1
    #exp = 0
    fac2 = (v0/100)**exp
    max_err = fac * fac2
    #print v0, fac, exp, fac2, max_err
    g, mesh2 = adapt_mesh(f, mesh, max_err=max_err, exp=exp)

    plot(mesh, title=title1 + " (mesh)")
    plot(f, title=title1)
    plot(mesh2, title=title2 + " (mesh)")
    plot(g, title=title2)
    interactive()


if __name__ == "__main__":
    N = 10
    fac = 0.01
    show_testcase(0, 1, 10, fac, "degree 1 - orig", "degree 1 - refined (no change)")
    show_testcase(0, 2, 10, fac, "degree 2 - orig", "degree 2 - refined")
    show_testcase(0, 3, 10, fac, "degree 3 - orig", "degree 3 - refined")
    show_testcase(0, 3, 10, 0.2*fac, "degree 3 - orig", "degree 3 - more refined")
    show_testcase(1, 2, 10, fac, "smooth: degree 2 - orig", "smooth: degree 2 - refined")
    show_testcase(1, 3, 10, fac, "smooth: degree 3 - orig", "smooth: degree 3 - refined")
    show_testcase(2, 2, 10, fac, "bumps: degree 2 - orig", "bumps: degree 2 - refined")
    show_testcase(2, 3, 10, fac, "bumps: degree 3 - orig", "bumps: degree 3 - refined")

Trazar en malla sin refinar Malla sin refinar Parcela en malla refinada Malla adaptativamente refinada

Elmar Zander
fuente