He estado investigando el significado de la propiedad positiva semi-definida de las matrices de correlación o covarianza.
Estoy buscando cualquier información sobre
- Definición de semi-definición positiva;
- Sus propiedades importantes, implicaciones prácticas;
- La consecuencia de tener determinante negativo, el impacto en el análisis multivariante o resultados de la simulación etc.
Respuestas:
fuente
The answer is quite simple.
The correlation matrix is defined thus:
LetX=[x1,x2,...,xn] be the m×n data matrix: m observations, n variables.
DefineXb=[(x1−μ1e)s1,(x2−μ2e)s2,(x3−μ3e)s3,...] as the matrix of normalized data, with μ1 being mean for the variable 1, μ2 the mean for variable 2, etc., and s1 the standard deviation of variable 1, etc., and e is a vector of all 1s.
The correlation matrix is then
A matrixA is positive semi-definite if there is no vector z such that z′Az<0 .
SupposeC is not positive definite. Then there exists a vector w such that w′Cw<0 .
However(w′Cw)=(w′X′bXbw)=(Xbw)′(Xbw)=z21+z22... , where z=Xbw , and thus w′Cw is a sum of squares and therefore cannot be less than zero.
So not only the correlation matrix but any matrixU which can be written in the form V′V is positive semi-definite.
fuente
(Possible looseness in reasoning would be mine. I'm not a mathematician: this is a depiction, not proof, and is from my numeric experimenting, not from books.)
Fig1.
Fig2.
Fig3.
fuente