Usando líneas GL:
Recomendaría usar la API GL para dibujar líneas. El grosor de la línea siempre será de 1 px en la pantalla y no hay opción para cambiarlo. Tampoco habrá sombras.
Las llamadas al método GL se ejecutan inmediatamente, por lo que debe asegurarse de llamarlas después de que la cámara ya haya renderizado.
Adjuntar el script a la cámara y usar Camera.OnPostRender () funciona bien para renderizar en la ventana del juego. Para que se muestren en el editor, puede usar MonoBehaviour.OnDrawGizmos () .
Aquí está el código básico para dibujar una línea con la API GL:
public Material lineMat = new Material("Shader \"Lines/Colored Blended\" {" + "SubShader { Pass { " + " Blend SrcAlpha OneMinusSrcAlpha " + " ZWrite Off Cull Off Fog { Mode Off } " + " BindChannels {" + " Bind \"vertex\", vertex Bind \"color\", color }" + "} } }");
void OnPostRender() {
GL.Begin(GL.LINES);
lineMat.SetPass(0);
GL.Color(new Color(0f, 0f, 0f, 1f));
GL.Vertex3(0f, 0f, 0f);
GL.Vertex3(1f, 1f, 1f);
GL.End();
}
Aquí hay un guión completo que une todos los puntos dados al punto principal. Hay algunas instrucciones en los comentarios del código para configurarlo correctamente y sobre lo que está sucediendo.
Si tiene problemas para cambiar el color de las líneas de conexión, asegúrese de usar un sombreador en su material de línea que tenga en cuenta el color del vértice, como por ejemplo Unlit/Color
.
using UnityEngine;
using System.Collections;
// Put this script on a Camera
public class DrawLines : MonoBehaviour {
// Fill/drag these in from the editor
// Choose the Unlit/Color shader in the Material Settings
// You can change that color, to change the color of the connecting lines
public Material lineMat;
public GameObject mainPoint;
public GameObject[] points;
// Connect all of the `points` to the `mainPoint`
void DrawConnectingLines() {
if(mainPoint && points.Length > 0) {
// Loop through each point to connect to the mainPoint
foreach(GameObject point in points) {
Vector3 mainPointPos = mainPoint.transform.position;
Vector3 pointPos = point.transform.position;
GL.Begin(GL.LINES);
lineMat.SetPass(0);
GL.Color(new Color(lineMat.color.r, lineMat.color.g, lineMat.color.b, lineMat.color.a));
GL.Vertex3(mainPointPos.x, mainPointPos.y, mainPointPos.z);
GL.Vertex3(pointPos.x, pointPos.y, pointPos.z);
GL.End();
}
}
}
// To show the lines in the game window whne it is running
void OnPostRender() {
DrawConnectingLines();
}
// To show the lines in the editor
void OnDrawGizmos() {
DrawConnectingLines();
}
}
Nota adicional sobre las sombras: exploré el uso de un sombreador de geometría para crear sombras, pero dado que las llamadas GL se ejecutan de inmediato, no están en la tubería de renderizado normal AutoLight.cginc
y Lighting.cginc
no recogerán el ShadowCaster
pase.
Líneas con sombras y radio
Si necesita cambiar el grosor de la línea y desea tener sombras realistas. Simplemente use una malla de cilindro y escale la altura.
Aquí hay un script que hará un cilindro para conectar cada punto al punto principal. Colóquelo en un objeto de juego vacío y complete los parámetros. Contendrá todos los objetos de conexión adicionales.
using UnityEngine;
using System.Collections;
public class ConnectPointsWithCylinderMesh : MonoBehaviour {
// Material used for the connecting lines
public Material lineMat;
public float radius = 0.05f;
// Connect all of the `points` to the `mainPoint`
public GameObject mainPoint;
public GameObject[] points;
// Fill in this with the default Unity Cylinder mesh
// We will account for the cylinder pivot/origin being in the middle.
public Mesh cylinderMesh;
GameObject[] ringGameObjects;
// Use this for initialization
void Start () {
this.ringGameObjects = new GameObject[points.Length];
//this.connectingRings = new ProceduralRing[points.Length];
for(int i = 0; i < points.Length; i++) {
// Make a gameobject that we will put the ring on
// And then put it as a child on the gameobject that has this Command and Control script
this.ringGameObjects[i] = new GameObject();
this.ringGameObjects[i].name = "Connecting ring #" + i;
this.ringGameObjects[i].transform.parent = this.gameObject.transform;
// We make a offset gameobject to counteract the default cylindermesh pivot/origin being in the middle
GameObject ringOffsetCylinderMeshObject = new GameObject();
ringOffsetCylinderMeshObject.transform.parent = this.ringGameObjects[i].transform;
// Offset the cylinder so that the pivot/origin is at the bottom in relation to the outer ring gameobject.
ringOffsetCylinderMeshObject.transform.localPosition = new Vector3(0f, 1f, 0f);
// Set the radius
ringOffsetCylinderMeshObject.transform.localScale = new Vector3(radius, 1f, radius);
// Create the the Mesh and renderer to show the connecting ring
MeshFilter ringMesh = ringOffsetCylinderMeshObject.AddComponent<MeshFilter>();
ringMesh.mesh = this.cylinderMesh;
MeshRenderer ringRenderer = ringOffsetCylinderMeshObject.AddComponent<MeshRenderer>();
ringRenderer.material = lineMat;
}
}
// Update is called once per frame
void Update () {
for(int i = 0; i < points.Length; i++) {
// Move the ring to the point
this.ringGameObjects[i].transform.position = this.points[i].transform.position;
// Match the scale to the distance
float cylinderDistance = 0.5f*Vector3.Distance(this.points[i].transform.position, this.mainPoint.transform.position);
this.ringGameObjects[i].transform.localScale = new Vector3(this.ringGameObjects[i].transform.localScale.x, cylinderDistance, this.ringGameObjects[i].transform.localScale.z);
// Make the cylinder look at the main point.
// Since the cylinder is pointing up(y) and the forward is z, we need to offset by 90 degrees.
this.ringGameObjects[i].transform.LookAt(this.mainPoint.transform, Vector3.up);
this.ringGameObjects[i].transform.rotation *= Quaternion.Euler(90, 0, 0);
}
}
}
Líneas con sombras y radio a través del cubo
Saliendo de la respuesta de @ MadLittleMod , aquí hay otra versión que usa líneas basadas en Cubo ( tris: 12 ) en lugar de líneas basadas en Cilindro ( tris: 80 ):
fuente