Según tengo entendido, una prueba de que P = NP o P ≠ NP debería ser no relativizable (como en los oráculos de la teoría de la recursión).
Sin embargo, prácticamente todas las pruebas parecen ser relativizables.
¿Cuáles son buenos ejemplos de pruebas no relativizables, del tipo que una prueba P = NP / P ≠ NP debería ser, que no sean triviales o artificiales?
(No soy un teórico de la recursión, así que perdón por la falta de citas).
[EDITAR: mejor publicación de mathoverflow ]
Respuestas:
Como señala Steven, el ejemplo canónico es . Este colapso no relativizar, en el sentido de que hay un oráculo A , a reserva de que I P A ≠ P S P A C E A . La intuición de por qué la prueba conocida de este resultado evita la barrera de la relativización es que usa aritmetización (Yonatan aludió a esto en un comentario): un protocolo interactivo para el P S P A C EIP=PSPACE A IPA≠PSPACEA PSPACE problema completo TQBF se da al considerar una extensión de una fórmula booleana cuantificada a un polinomio de bajo grado sobre un campo adecuadamente grande. Si se nos da una fórmula booleana relativizada (con puertas de oráculo), dicha extensión no existe.
También hay un enfoque interesante para entender la relativización a través de la lógica. En un manuscrito antiguo, Arora, Impagliazzo y Vazirani definen un sistema de axiomas de modo que los resultados relativizantes son exactamente los que se derivan de los axiomas, mientras que los resultados no relativizantes son independientes del sistema. Un artículo de Impagliazzo, Kabanets y Kolokolova hace algo similar para la algebrización al introducir un axioma adicional a los definidos por Arora, Impagliazzo y Vazirani. Muestran que los resultados no relativizantes más conocidos se derivan de sus axiomas, mientras que P vs NP, entre otros, es independiente de ellos.
Disculpas si me equivoqué, no soy un experto.
fuente
Aquí hay una lista de pruebas no relativizables:
El teorema de PCP
El compromiso dependiente de la instancia implica un protocolo de conocimiento cero:
una equivalencia entre conocimiento cero y compromisos
No existe un ofuscador de circuito eficiente de "caja negra virtual" para circuitos generales:
una equivalencia entre conocimiento cero y compromisos
Contra los probadores desenredados, NEXP tiene sistemas de prueba de 2 probadores mínimamente interactivos: sistemas de prueba
de una ronda de dos probadores: su poder y sus problemas
Contra los probadores posiblemente enredados, NEXP tiene protocolos MIP más interactivos:
una prueba interactiva de múltiples probadores para el sonido NEXP contra probadores enredados
fuente
Esta es una buena encuesta del campo realizada por un experto líder que resume / detalla algunos de los puntos de las otras respuestas hasta ahora y tiene ejemplos adicionales.
[1] El papel de la relativización en la teoría de la complejidad Fortnow
fuente