No creo que se deba encontrar una expresión analítica para el límite de decisión de Bayes, para una realización dada de los 's. Del mismo modo, dudo que se suponga que debe obtener el límite sobre la distribución de , ya que eso es solo por simetría, como notó.mkmkx=y
Creo que lo que necesita es mostrar un programa que pueda calcular el límite de decisión para una realización dada de los 's. Esto se puede hacer estableciendo una cuadrícula de valores e , calculando las densidades condicionales de clase y encontrando los puntos donde son iguales.mkxy
Este código es una puñalada. IIRC en realidad hay código para calcular el límite de decisión en las estadísticas aplicadas modernas con S , pero no lo tengo a mano en este momento.
# for dmvnorm/rmvnorm: multivariate normal distribution
library(mvtnorm)
# class-conditional density given mixture centers
f <- function(x, m)
{
out <- numeric(nrow(x))
for(i in seq_len(nrow(m)))
out <- out + dmvnorm(x, m[i, ], diag(0.2, 2))
out
}
# generate the class mixture centers
m1 <- rmvnorm(10, c(1,0), diag(2))
m2 <- rmvnorm(10, c(0,1), diag(2))
# and plot them
plot(m1, xlim=c(-2, 3), ylim=c(-2, 3), col="blue")
points(m2, col="red")
# display contours of the class-conditional densities
dens <- local({
x <- y <- seq(-3, 4, len=701)
f1 <- outer(x, y, function(x, y) f(cbind(x, y), m1))
f2 <- outer(x, y, function(x, y) f(cbind(x, y), m2))
list(x=x, y=y, f1=f1, f2=f2)
})
contour(dens$x, dens$y, dens$f1, col="lightblue", lty=2, levels=seq(.3, 3, len=10),
labels="", add=TRUE)
contour(dens$x, dens$y, dens$f2, col="pink", lty=2, levels=seq(.3, 3, len=10),
labels="", add=TRUE)
# find which points are on the Bayes decision boundary
eq <- local({
f1 <- dens$f1
f2 <- dens$f2
pts <- seq(-3, 4, len=701)
eq <- which(abs((dens$f1 - dens$f2)/(dens$f1 + dens$f2)) < 5e-3, arr.ind=TRUE)
eq[,1] <- pts[eq[,1]]
eq[,2] <- pts[eq[,2]]
eq
})
points(eq, pch=16, cex=0.5, col="grey")
Resultado: