Varias regresiones logísticas vs regresión multinomial

10

¿Es viable hacer varias regresiones logísticas binarias en lugar de hacer una regresión multinomial? A partir de esta pregunta: Regresión logística multinomial versus regresión logística binaria de uno contra resto Veo que la regresión multinomial podría tener errores estándar más bajos.

Sin embargo, el paquete que me gustaría utilizar no se ha generalizado a la regresión multinomial ( ncvreg: http://cran.r-project.org/web/packages/ncvreg/ncvreg.pdf ) y por eso me preguntaba si simplemente podría hacerlo varias regresiones logísticas binarias en su lugar.

bdeonovic
fuente

Respuestas:

9

Con un modelo logit multinomial, impone la restricción que todas las probabilidades predichas suman 1. Cuando usa un modelo logit binario separado, ya no puede imponer esa restricción, después de todo, se estiman en modelos separados. Entonces esa sería la principal diferencia entre estos dos modelos.

Como puede ver en el ejemplo a continuación (en Stata, ya que ese es el programa que mejor conozco), los modelos tienden a ser similares pero no iguales. Sería especialmente cuidadoso al extrapolar las probabilidades predichas.

// some data preparation
. sysuse nlsw88, clear                                                               
(NLSW, 1988 extract)                                                                 

.                                                                                    
. gen byte occat = cond(occupation < 3                 , 1,      ///                 
>                  cond(inlist(occupation, 5, 6, 8, 13), 2, 3))  ///                 
>                  if !missing(occupation)                                           
(9 missing values generated)                                                         

. label variable occat "occupation in categories"                                    

. label define occat 1 "high"   ///                                                  
>                    2 "middle" ///                                                  
>                    3 "low"                                                         

. label value occat occat                                                            

.                                                                                    
. gen byte middle = (occat == 2) if occat !=1 & !missing(occat)                      
(590 missing values generated)                                                       

. gen byte high   = (occat == 1) if occat !=2 & !missing(occat)                      
(781 missing values generated)                                                       


// a multinomial logit model
. mlogit occat i.race i.collgrad , base(3) nolog                                     

Multinomial logistic regression                   Number of obs   =       2237       
                                                  LR chi2(6)      =     218.82       
                                                  Prob > chi2     =     0.0000       
Log likelihood = -2315.9312                       Pseudo R2       =     0.0451       

-------------------------------------------------------------------------------      
        occat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]      
--------------+----------------------------------------------------------------      
high          |                                                                      
         race |                                                                      
       black  |  -.4005801   .1421777    -2.82   0.005    -.6792433    -.121917      
       other  |   .4588831   .4962591     0.92   0.355    -.5137668    1.431533      
              |                                                                      
     collgrad |                                                                      
college grad  |   1.495019   .1341625    11.14   0.000     1.232065    1.757972      
        _cons |  -.7010308   .0705042    -9.94   0.000    -.8392165   -.5628451      
--------------+----------------------------------------------------------------      
middle        |                                                                      
         race |                                                                      
       black  |   .6728568   .1106792     6.08   0.000     .4559296     .889784      
       other  |   .2678372    .509735     0.53   0.599    -.7312251    1.266899      
              |                                                                      
     collgrad |                                                                      
college grad  |    .976244   .1334458     7.32   0.000      .714695    1.237793      
        _cons |   -.517313   .0662238    -7.81   0.000    -.6471092   -.3875168      
--------------+----------------------------------------------------------------      
low           |  (base outcome)                                                      
-------------------------------------------------------------------------------      

// separate logits:
. logit high   i.race i.collgrad , nolog                                             

Logistic regression                               Number of obs   =       1465       
                                                  LR chi2(3)      =     154.21       
                                                  Prob > chi2     =     0.0000       
Log likelihood = -906.79453                       Pseudo R2       =     0.0784       

-------------------------------------------------------------------------------      
         high |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]      
--------------+----------------------------------------------------------------      
         race |                                                                      
       black  |  -.5309439   .1463507    -3.63   0.000     -.817786   -.2441017      
       other  |   .2670161   .5116686     0.52   0.602     -.735836    1.269868      
              |                                                                      
     collgrad |                                                                      
college grad  |   1.525834   .1347081    11.33   0.000     1.261811    1.789857      
        _cons |  -.6808361   .0694323    -9.81   0.000     -.816921   -.5447512      
-------------------------------------------------------------------------------      

. logit middle i.race i.collgrad , nolog                                             

Logistic regression                               Number of obs   =       1656       
                                                  LR chi2(3)      =      90.13       
                                                  Prob > chi2     =     0.0000       
Log likelihood = -1098.9988                       Pseudo R2       =     0.0394       

-------------------------------------------------------------------------------      
       middle |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]      
--------------+----------------------------------------------------------------      
         race |                                                                      
       black  |   .6942945   .1114418     6.23   0.000     .4758725    .9127164      
       other  |   .3492788   .5125802     0.68   0.496    -.6553598    1.353918      
              |                                                                      
     collgrad |                                                                      
college grad  |   .9979952   .1341664     7.44   0.000     .7350339    1.260957      
        _cons |  -.5287625   .0669093    -7.90   0.000    -.6599023   -.3976226      
-------------------------------------------------------------------------------      
Maarten Buis
fuente
2

Puede probar un enfoque de "uno contra todos", donde entrena tantos clasificadores binarios como clases que tenga. Para cada clasificador, las muestras positivas son las que pertenecen a esa clase y las negativas el resto, de modo que cada clasificador logístico le brinda la probabilidad condicional de que una muestra concreta pertenezca a esa clase.

Ahora, al clasificar, asigna cada nueva muestra a la clase para la cual el clasificador correspondiente le brinda la mayor probabilidad.

jpmuc
fuente