De HMM estándar a HMM bayesiano

8

Estoy tratando de entender cuál es la diferencia entre un HMM estándar y un HMM bayesiano. Wikipedia solo menciona brevemente cómo se ve el modelo, pero necesito un tutorial más detallado. ¿Alguien sabe de un documento o una implementación que pueda ver?

También tengo problemas con la terminología utilizada. ¿Qué significa prácticamente si "coloca / coloca un Dirichlet antes en una distribución"?

Laughingman
fuente
1
¿Está familiarizado con las distribuciones anteriores y posteriores? Si no es así, lea un ejemplo de inferencia bayesiana en datos binomiales (es decir, dada una secuencia observada de lanzamientos de monedas, infiera la probabilidad de caras) , entonces es una generalización directa a datos multinomiales (es decir, dados algunos rollos de un sesgo Dado de lado , infiere la probabilidad de observar cada lado). El último problema, que implica "colocar un Dirichlet antes" en el vector de probabilidad, es la misma inferencia que se hace con un HMM bayesiano. K
jerad
Aquí hay un buen documento breve sobre HMM bayesianos para el etiquetado de parte del discurso que tiene una gran explicación de por qué es útil el enfoque bayesiano.
jerad
Entonces, ¿alguien puede dar un ejemplo de cómo se vería? En el sentido de un dado de 6 lados, el vector de probabilidad uniforme sería {1/6, 1/6, 1/6, 1/6, 1/6, 1/6} ¿verdad? ¿Y eso significaría si coloco un Dirichlet Prior sobre eso?
Laughingman

Respuestas:

2

En términos del Dirichlet anterior, creo que dice que tienes un conjunto de variables que son todos porcentajes / proporciones entre 0 y 1 y todos suman 1. (Eso es donde y ) En el caso de los HMM, eso podría usarse para modelar la probabilidad de transición a uno de posibles estados, o la probabilidad de emitir uno de posibles símbolos.norteX1...Xnorte0 0Xyo1Xyo=1nortenorte

La página de Wikipedia de Dirichlet lo dice bastante bien, especialmente la sección titulada "Conjugar a categórico / multinomial".

Wayne
fuente