Explicar la tabla de densidad del núcleo

8

Estoy ejecutando la simulación en un modelo lineal. Obtengo 1000 resultados y los resultados se colocan en un gráfico de densidad. Entiendo que xaxis es la variable dependiente y yaxis representa la densidad del núcleo. Yaxis está en números decimales como de 0 a 0.15. ¿Cómo les explico esto a los otros usuarios? ¿Hay un 15% de posibilidades de que los valores simulados caigan entre x1 y x2?

Esta es mi salida de simulación:

summary(s)

Model:  ls 
Number of simulations:  1000 

Values of X
  (Intercept)  Volume
1           1 1699992
attr(,"assign")
[1] 0 1

Expected Values: E(Y|X) 
    mean    sd    50% 2.5%  97.5%
1 12.305 2.638 12.231 7.03 17.512

ingrese la descripción de la imagen aquí

usuario1471980
fuente
¿Cómo explicarías la altura de alguna otra densidad? (Si esa es la parte que no sabes, parece que estás haciendo la pregunta incorrecta; necesitas la más general; si sabes cómo explicar qué es una densidad, la explicación es la misma)
Glen_b -Reinstala Monica

Respuestas:

14

Puede pensar en la Estimación de densidad del núcleo como un histograma suavizado. Los histogramas están limitados por el hecho de que son inherentemente discretos (a través de contenedores) y, por lo tanto, son más apropiados para mostrar datos en variables discretas y pueden ser muy sensibles al tamaño del contenedor.

Lo que realmente está haciendo con la Estimación de densidad de kernel es estimar la función de densidad de probabilidad. Esto hace que la interpretación sea sencilla. Entonces, el área debajo de la curva es 1, y la probabilidad de que un valor esté entre x1 y x2 es el área debajo de la curva entre esos dos puntos.

El número de valores Y determinará la "resolución" de la curva, por lo que si asume una línea recta entre cada dos puntos Y adyacentes, puede calcular una aproximación del área debajo de la curva entre esos dos puntos.

Para determinar la probabilidad de un valor de :xP(xa<x<xb)

P(xa<x<xb)=ya+..+yb

El resultado será más preciso cuantos más valores tenga.y

Bitwise
fuente
ok, mirando la tabla de arriba, ¿qué significa 0.10? Sé lo que son los ejes x. ¿Cómo puedo decir que esta es una buena estimación?
usuario1471980
mirando el gráfico anterior y-axix c (0.00, 0.10) y necesita calcular la probabilidad de que el eje x comience entre 5 y 20, (20-5) * (0.10 + 0.00) /2=0.75. Hay un 75% de posibilidades de que los valores de la simulación estén entre 5 y 20. ¿Es esto correcto?
user1471980
Creo que estoy entendiendo esto. Pero solo tengo que asegurarme. y-axix c (0, 0.05, 0.10, 0.15), xaxis c (5,10,15,20), para calcular el acumulado: (20-5) * (0.0 + 0.05 + 0.1 + 0.15) /4=1.125 (este valor es mayor que 1, es este derecho?)
user1471980
@ user1471980 Actualicé mi respuesta, estoy eliminando mis comentarios para evitar confusiones.
Bitwise
1

Dado que no hay reputación para comentar sobre la publicación anterior ...

La expresión , no se ve bien. Tomemos, por ejemplo, la función de densidad uniforme en el intervalo [0, 1.0], luego de acuerdo con lo anterior y usando solo la probabilidad de cualquier intervalo sería 2. A lo que creo que el cartel estaba tratando de referirse era la regla del trapecio .P(xa<x<xb)=ya+...+ybya,yb

John Smith
fuente