¡Solo por diversión, prueba por inducción!
Dejar P(k) ser la declaración de que Var[∑ki=1aiXi]=∑ki=1a2iσ2i+2∑ki=1∑kj>iaiajCov[Xi,Xj]
Then P(2) is (trivially) true (you said you're happy with that in the question).
Let's assume P(k) is true. Thus,
Var[∑k+1i=1aiXi]=Var[∑ki=1aiXi+ak+1Xk+1]
=Var[∑ki=1aiXi]+Var[ak+1Xk+1]+2Cov[∑ki=1aiXi,ak+1Xk+1]
=∑ki=1a2iσ2i+2∑ki=1∑kj>iaiajCov[Xi,Xj]+a2k+1σ2k+1+2Cov[∑ki=1aiXi,ak+1Xk+1]
=∑k+1i=1a2iσ2i+2∑ki=1∑kj>iaiajCov[Xi,Xj]+2∑ki=1aiak+1Cov[Xi,Xk+1]
=∑k+1i=1a2iσ2i+2∑k+1i=1∑k+1j>iaiajCov[Xi,Xj]
Thus P(k+1) is true.
So, by induction,
Var[∑ni=1aiXi]=∑ni=1a2iσ2i+2∑ni=1∑nj>iaiajCov[Xi,Xj] for all integer n≥2.