Optimización del rendimiento de un sombreador de fragmentos pesados

9

Necesito ayuda para optimizar el siguiente conjunto de sombreadores:

Vértice:

    precision mediump float;

uniform vec2 rubyTextureSize;

attribute vec4 vPosition;
attribute vec2 a_TexCoordinate;

varying vec2 tc;

void main() {
    gl_Position = vPosition;

    tc = a_TexCoordinate;
}

Fragmento:

precision mediump float;

/*
 Uniforms
 - rubyTexture: texture sampler
 - rubyTextureSize: size of the texture before rendering
 */

uniform sampler2D rubyTexture;
uniform vec2 rubyTextureSize;
uniform vec2 rubyTextureFract;

/*
 Varying attributes
 - tc: coordinate of the texel being processed
 - xyp_[]_[]_[]: a packed coordinate for 3 areas within the texture
 */

varying vec2 tc;

/*
 Constants
 */
/*
 Inequation coefficients for interpolation
 Equations are in the form: Ay + Bx = C
 45, 30, and 60 denote the angle from x each line the cooeficient variable set builds
 */
const vec4 Ai = vec4(1.0, -1.0, -1.0, 1.0);
const vec4 B45 = vec4(1.0, 1.0, -1.0, -1.0);
const vec4 C45 = vec4(1.5, 0.5, -0.5, 0.5);
const vec4 B30 = vec4(0.5, 2.0, -0.5, -2.0);
const vec4 C30 = vec4(1.0, 1.0, -0.5, 0.0);
const vec4 B60 = vec4(2.0, 0.5, -2.0, -0.5);
const vec4 C60 = vec4(2.0, 0.0, -1.0, 0.5);

const vec4 M45 = vec4(0.4, 0.4, 0.4, 0.4);
const vec4 M30 = vec4(0.2, 0.4, 0.2, 0.4);
const vec4 M60 = M30.yxwz;
const vec4 Mshift = vec4(0.2);

// Coefficient for weighted edge detection
const float coef = 2.0;
// Threshold for if luminance values are "equal"
const vec4 threshold = vec4(0.32);

// Conversion from RGB to Luminance (from GIMP)
const vec3 lum = vec3(0.21, 0.72, 0.07);

// Performs same logic operation as && for vectors
bvec4 _and_(bvec4 A, bvec4 B) {
    return bvec4(A.x && B.x, A.y && B.y, A.z && B.z, A.w && B.w);
}

// Performs same logic operation as || for vectors
bvec4 _or_(bvec4 A, bvec4 B) {
    return bvec4(A.x || B.x, A.y || B.y, A.z || B.z, A.w || B.w);
}

// Converts 4 3-color vectors into 1 4-value luminance vector
vec4 lum_to(vec3 v0, vec3 v1, vec3 v2, vec3 v3) {
    //    return vec4(dot(lum, v0), dot(lum, v1), dot(lum, v2), dot(lum, v3));

    return mat4(v0.x, v1.x, v2.x, v3.x, v0.y, v1.y, v2.y, v3.y, v0.z, v1.z,
            v2.z, v3.z, 0.0, 0.0, 0.0, 0.0) * vec4(lum, 0.0);
}

// Gets the difference between 2 4-value luminance vectors
vec4 lum_df(vec4 A, vec4 B) {
    return abs(A - B);
}

// Determines if 2 4-value luminance vectors are "equal" based on threshold
bvec4 lum_eq(vec4 A, vec4 B) {
    return lessThan(lum_df(A, B), threshold);
}

vec4 lum_wd(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h) {
    return lum_df(a, b) + lum_df(a, c) + lum_df(d, e) + lum_df(d, f)
            + 4.0 * lum_df(g, h);
}

// Gets the difference between 2 3-value rgb colors
float c_df(vec3 c1, vec3 c2) {
    vec3 df = abs(c1 - c2);
    return df.r + df.g + df.b;
}

void main() {

    /*
     Mask for algorhithm
     +-----+-----+-----+-----+-----+
     |     |  1  |  2  |  3  |     |
     +-----+-----+-----+-----+-----+
     |  5  |  6  |  7  |  8  |  9  |
     +-----+-----+-----+-----+-----+
     | 10  | 11  | 12  | 13  | 14  |
     +-----+-----+-----+-----+-----+
     | 15  | 16  | 17  | 18  | 19  |
     +-----+-----+-----+-----+-----+
     |     | 21  | 22  | 23  |     |
     +-----+-----+-----+-----+-----+
     */

    float x = rubyTextureFract.x;
    float y = rubyTextureFract.y;

    vec4 xyp_1_2_3 = tc.xxxy + vec4(-x, 0.0, x, -2.0 * y);
    vec4 xyp_6_7_8 = tc.xxxy + vec4(-x, 0.0, x, -y);
    vec4 xyp_11_12_13 = tc.xxxy + vec4(-x, 0.0, x, 0.0);
    vec4 xyp_16_17_18 = tc.xxxy + vec4(-x, 0.0, x, y);
    vec4 xyp_21_22_23 = tc.xxxy + vec4(-x, 0.0, x, 2.0 * y);
    vec4 xyp_5_10_15 = tc.xyyy + vec4(-2.0 * x, -y, 0.0, y);
    vec4 xyp_9_14_9 = tc.xyyy + vec4(2.0 * x, -y, 0.0, y);

    // Get mask values by performing texture lookup with the uniform sampler
    vec3 P1 = texture2D(rubyTexture, xyp_1_2_3.xw).rgb;
    vec3 P2 = texture2D(rubyTexture, xyp_1_2_3.yw).rgb;
    vec3 P3 = texture2D(rubyTexture, xyp_1_2_3.zw).rgb;

    vec3 P6 = texture2D(rubyTexture, xyp_6_7_8.xw).rgb;
    vec3 P7 = texture2D(rubyTexture, xyp_6_7_8.yw).rgb;
    vec3 P8 = texture2D(rubyTexture, xyp_6_7_8.zw).rgb;

    vec3 P11 = texture2D(rubyTexture, xyp_11_12_13.xw).rgb;
    vec3 P12 = texture2D(rubyTexture, xyp_11_12_13.yw).rgb;
    vec3 P13 = texture2D(rubyTexture, xyp_11_12_13.zw).rgb;

    vec3 P16 = texture2D(rubyTexture, xyp_16_17_18.xw).rgb;
    vec3 P17 = texture2D(rubyTexture, xyp_16_17_18.yw).rgb;
    vec3 P18 = texture2D(rubyTexture, xyp_16_17_18.zw).rgb;

    vec3 P21 = texture2D(rubyTexture, xyp_21_22_23.xw).rgb;
    vec3 P22 = texture2D(rubyTexture, xyp_21_22_23.yw).rgb;
    vec3 P23 = texture2D(rubyTexture, xyp_21_22_23.zw).rgb;

    vec3 P5 = texture2D(rubyTexture, xyp_5_10_15.xy).rgb;
    vec3 P10 = texture2D(rubyTexture, xyp_5_10_15.xz).rgb;
    vec3 P15 = texture2D(rubyTexture, xyp_5_10_15.xw).rgb;

    vec3 P9 = texture2D(rubyTexture, xyp_9_14_9.xy).rgb;
    vec3 P14 = texture2D(rubyTexture, xyp_9_14_9.xz).rgb;
    vec3 P19 = texture2D(rubyTexture, xyp_9_14_9.xw).rgb;

    // Store luminance values of each point in groups of 4
    // so that we may operate on all four corners at once
    vec4 p7 = lum_to(P7, P11, P17, P13);
    vec4 p8 = lum_to(P8, P6, P16, P18);
    vec4 p11 = p7.yzwx; // P11, P17, P13, P7
    vec4 p12 = lum_to(P12, P12, P12, P12);
    vec4 p13 = p7.wxyz; // P13, P7,  P11, P17
    vec4 p14 = lum_to(P14, P2, P10, P22);
    vec4 p16 = p8.zwxy; // P16, P18, P8,  P6
    vec4 p17 = p7.zwxy; // P17, P13, P7,  P11
    vec4 p18 = p8.wxyz; // P18, P8,  P6,  P16
    vec4 p19 = lum_to(P19, P3, P5, P21);
    vec4 p22 = p14.wxyz; // P22, P14, P2,  P10
    vec4 p23 = lum_to(P23, P9, P1, P15);

    // Scale current texel coordinate to [0..1]
    vec2 fp = fract(tc * rubyTextureSize);

    // Determine amount of "smoothing" or mixing that could be done on texel corners
    vec4 AiMulFpy = Ai * fp.y;
    vec4 B45MulFpx = B45 * fp.x;
    vec4 ma45 = smoothstep(C45 - M45, C45 + M45, AiMulFpy + B45MulFpx);
    vec4 ma30 = smoothstep(C30 - M30, C30 + M30, AiMulFpy + B30 * fp.x);
    vec4 ma60 = smoothstep(C60 - M60, C60 + M60, AiMulFpy + B60 * fp.x);
    vec4 marn = smoothstep(C45 - M45 + Mshift, C45 + M45 + Mshift,
            AiMulFpy + B45MulFpx);

    // Perform edge weight calculations
    vec4 e45 = lum_wd(p12, p8, p16, p18, p22, p14, p17, p13);
    vec4 econt = lum_wd(p17, p11, p23, p13, p7, p19, p12, p18);
    vec4 e30 = lum_df(p13, p16);
    vec4 e60 = lum_df(p8, p17);

    // Calculate rule results for interpolation
    bvec4 r45_1 = _and_(notEqual(p12, p13), notEqual(p12, p17));
    bvec4 r45_2 = _and_(not (lum_eq(p13, p7)), not (lum_eq(p13, p8)));
    bvec4 r45_3 = _and_(not (lum_eq(p17, p11)), not (lum_eq(p17, p16)));
    bvec4 r45_4_1 = _and_(not (lum_eq(p13, p14)), not (lum_eq(p13, p19)));
    bvec4 r45_4_2 = _and_(not (lum_eq(p17, p22)), not (lum_eq(p17, p23)));
    bvec4 r45_4 = _and_(lum_eq(p12, p18), _or_(r45_4_1, r45_4_2));
    bvec4 r45_5 = _or_(lum_eq(p12, p16), lum_eq(p12, p8));
    bvec4 r45 = _and_(r45_1, _or_(_or_(_or_(r45_2, r45_3), r45_4), r45_5));
    bvec4 r30 = _and_(notEqual(p12, p16), notEqual(p11, p16));
    bvec4 r60 = _and_(notEqual(p12, p8), notEqual(p7, p8));

    // Combine rules with edge weights
    bvec4 edr45 = _and_(lessThan(e45, econt), r45);
    bvec4 edrrn = lessThanEqual(e45, econt);
    bvec4 edr30 = _and_(lessThanEqual(coef * e30, e60), r30);
    bvec4 edr60 = _and_(lessThanEqual(coef * e60, e30), r60);

    // Finalize interpolation rules and cast to float (0.0 for false, 1.0 for true)
    vec4 final45 = vec4(_and_(_and_(not (edr30), not (edr60)), edr45));
    vec4 final30 = vec4(_and_(_and_(edr45, not (edr60)), edr30));
    vec4 final60 = vec4(_and_(_and_(edr45, not (edr30)), edr60));
    vec4 final36 = vec4(_and_(_and_(edr60, edr30), edr45));
    vec4 finalrn = vec4(_and_(not (edr45), edrrn));

    // Determine the color to mix with for each corner
    vec4 px = step(lum_df(p12, p17), lum_df(p12, p13));

    // Determine the mix amounts by combining the final rule result and corresponding
    // mix amount for the rule in each corner
    vec4 mac = final36 * max(ma30, ma60) + final30 * ma30 + final60 * ma60
            + final45 * ma45 + finalrn * marn;

    /*
     Calculate the resulting color by traversing clockwise and counter-clockwise around
     the corners of the texel

     Finally choose the result that has the largest difference from the texel's original
     color
     */
    vec3 res1 = P12;
    res1 = mix(res1, mix(P13, P17, px.x), mac.x);
    res1 = mix(res1, mix(P7, P13, px.y), mac.y);
    res1 = mix(res1, mix(P11, P7, px.z), mac.z);
    res1 = mix(res1, mix(P17, P11, px.w), mac.w);

    vec3 res2 = P12;
    res2 = mix(res2, mix(P17, P11, px.w), mac.w);
    res2 = mix(res2, mix(P11, P7, px.z), mac.z);
    res2 = mix(res2, mix(P7, P13, px.y), mac.y);
    res2 = mix(res2, mix(P13, P17, px.x), mac.x);

    gl_FragColor = vec4(mix(res1, res2, step(c_df(P12, res1), c_df(P12, res2))),
            1.0);
}

Los sombreadores reciben una textura 2D y están destinados a escalarla bellamente en una superficie 2D de alta resolución (la pantalla del dispositivo). Es una optimización del algoritmo de escalado SABR en caso de que sea importante.

Ya funciona y funciona bien en dispositivos Android de muy alta gama (como LG Nexus 4), pero es realmente lento en dispositivos más débiles.

Los dispositivos Android que realmente me importan son Samsung Galaxy S 2 \ 3, con GPU Mali 400MP, que funcionan horriblemente con este sombreador.

Hasta ahora he intentado:

  1. Eliminando las variaciones (consejos de la guía Mali de ARM) - se realizó una mejora menor.
  2. Anular las funciones mix () con las mías, no sirvió de nada.
  3. reduciendo la precisión del flotador a lowp, no cambió nada.

Mido el rendimiento calculando el tiempo de renderizado (antes y después de eglSwapBuffers); esto me da una medición muy lineal y consistente del rendimiento.

Más allá de eso, realmente no sé dónde mirar o qué se puede optimizar aquí ...

Sé que este es un algoritmo pesado, y no estoy pidiendo consejo sobre qué métodos de escala alternativos usar: he probado muchos y este algoritmo proporciona el mejor resultado visual. Deseo utilizar exactamente el mismo algoritmo de manera optimizada.

ACTUALIZAR

  1. Descubrí que si hago todas las recuperaciones de textura con un vector constante en lugar de vectores dependientes, obtengo una mejora importante en el rendimiento, por lo que obviamente es un gran cuello de botella, probablemente debido a la memoria caché. Sin embargo, todavía necesito hacer esas recuperaciones. Jugué haciendo al menos algunas de las recuperaciones con variaciones vec2 (sin swizzling) pero no mejoró nada. Me pregunto cuál podría ser una buena manera de sondear eficientemente 21 texels.

  2. Descubrí que una parte importante de los cálculos se realiza varias veces con exactamente el mismo conjunto de texels, porque la salida se escala al menos x2, y sondeo con GL_NEAREST. Hay al menos 4 fragmentos que caen exactamente en los mismos texels. Si la escala es x4 en un dispositivo de alta resolución, hay 16 fragmentos que caen en los mismos texels, lo cual es un gran desperdicio. ¿Hay alguna forma de realizar un pase de sombreador adicional que calcule todos los valores que no cambian en varios fragmentos? Pensé en renderizar a una textura adicional fuera de la pantalla, pero necesito almacenar múltiples valores por texel, no solo uno.

ACTUALIZAR

  1. También noté que la CPU está casi sin usar, mientras que la GPU es un gran cuello de botella. ¿Algún consejo sobre cómo aprovechar la potencia de la CPU y la lógica de transferencia de la GPU a la CPU en esta situación?
SirKnigget
fuente
2
Nunca debes buscar la textura como una búsqueda. Pase el uv desde el vértice para que el sombreador de píxeles tenga tiempo de buscar la textura.
Tordin
¿Podría explicar por favor? ¿Qué quieres decir con uv?
SirKnigget
3
¿Se puede vincular a una descripción del "algoritmo de escala SABR"? Google no encuentra nada útil al respecto. Por cierto, un filtro de 21 texel (y bastante matemático) en una GPU móvil solo está buscando problemas. No creo que pueda esperar de manera realista que funcione bien sin comprometer la calidad en alguna parte.
Nathan Reed
Esto da la idea general: board.byuu.org/viewtopic.php?f=10&t=2248 , aunque no es la implementación exacta que encontré.
SirKnigget
2
En cuanto a las expectativas realistas, funciona muy bien en dispositivos de alta gama. Esperaría poder ajustar lo que tengo en un factor 5x o similar y hacerlo funcionar en dispositivos más débiles.
SirKnigget

Respuestas:

2

Me pregunto cuál podría ser una buena manera de sondear eficientemente 21 texels.

La respuesta es que la manera eficiente es la forma en que no se están encuestando 21 texels. Lamento ser obvio, pero los dispositivos móviles pueden no tener el ancho de bus necesario para admitir dichos núcleos. Debe optimizar reduciendo el tamaño de la textura conectada al muestreador para que el almacenamiento en caché cubra un radio de núcleo más grande.

Además, podría olvidarse de su núcleo de disco y utilizar un algoritmo de dos pasadas con un núcleo vertical, y otro con un núcleo puramente horizontal, de esta manera pasa de "2D" a "1D", por así decirlo, y reduce drásticamente el número de muestreos así como mejorar el rendimiento del caché gracias al acceso lineal.

Las recuperaciones verticales no deberían afectar el rendimiento de la memoria caché gracias a que las texturas de almacenamiento Z deben organizarse en la memoria de la GPU. cf http://en.wikipedia.org/wiki/Z-order_curve

v.oddou
fuente