“Ejemplo de clasificación de texto de IPTC” Código de respuesta

Ejemplo de clasificación de texto de IPTC

  CURL *curl;
  CURLcode res;
  curl = curl_easy_init();
  if(curl) {
    curl_easy_setopt(curl, CURLOPT_CUSTOMREQUEST, "POST");
    curl_easy_setopt(curl, CURLOPT_URL, "https://api.meaningcloud.com/class-1.1?key=<your_key>&txt=<text>&model=<model>");
    curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
    curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
    struct curl_slist *headers = NULL;
    curl_easy_setopt(curl, CURLOPT_HTTPHEADER, headers);
    res = curl_easy_perform(curl);
  }
  curl_easy_cleanup(curl);
Clear Crayfish

Ejemplo de clasificación de texto de IPTC

#! /usr/bin/env python

# Created by MeaningCloud Support Team
# Date: 26/02/18

import sys
import meaningcloud

# @param model str - Name of the model to use. Example: "IAB_en" by default = "IPTC_en"
model = 'IAB_en'

# @param license_key - Your license key (found in the subscription section in https://www.meaningcloud.com/developer/)
license_key = '<<<<< your license key >>>>>'

# @param text - Text to use for different API calls
text = 'London is a very nice city but I also love Madrid.'


try:
    # We are going to make a request to the Topics Extraction API
    topics_response = meaningcloud.TopicsResponse(meaningcloud.TopicsRequest(license_key, txt=text, lang='en',
                                                                             topicType='e').sendReq())

    # If there are no errors in the request, we print the output
    if topics_response.isSuccessful():
        print("\nThe request to 'Topics Extraction' finished successfully!\n")

        entities = topics_response.getEntities()
        if entities:
            print("\tEntities detected (" + str(len(entities)) + "):\n")
            for entity in entities:
                print("\t\t" + topics_response.getTopicForm(entity) + ' --> ' +
                      topics_response.getTypeLastNode(topics_response.getOntoType(entity)) + "\n")

        else:
            print("\tNo entities detected!\n")
    else:
        if topics_response.getResponse() is None:
            print("\nOh no! The request sent did not return a Json\n")
        else:
            print("\nOh no! There was the following error: " + topics_response.getStatusMsg() + "\n")

    # CLASS API CALL
    # class_response = meaningcloud.ClassResponse(
    #   meaningcloud.ClassRequest(license_key, txt=text, model=model).sendReq())

    # SENTIMENT API CALL
    # sentiment_response = meaningcloud.SentimentResponse(
    #   meaningcloud.SentimentRequest(license_key, lang='en', txt=text, txtf='plain').sendReq())

    # GENERIC API CALL
    # generic = meaningcloud.Request(url="url_of_specific_API",key=key)
    # generic.addParam('parameter','value')
    # generic_result = generic.sendRequest()
    # generic_response = meaningcloud.Response(generic_result)

    # We are going to make a request to the Language Identification API
    lang_response = meaningcloud.LanguageResponse(meaningcloud.LanguageRequest(license_key, txt=text).sendReq())

    # If there are no errors in the request, we will use the language detected to make a request to Sentiment and Topics
    if lang_response.isSuccessful():
        print("\nThe request to 'Language Identification' finished successfully!\n")
        first_lang = lang_response.getFirstLanguage()
        if first_lang:
            language = lang_response.getLanguageCode(first_lang)
            print("\tLanguage detected: " + lang_response.getLanguageName(first_lang) + ' (' + language + ")\n")
        else:
            print("\tNo language detected!\n")

    # We are going to make a request to the Lemmatization, PoS and Parsing API
    parser_response = meaningcloud.ParserResponse(
        meaningcloud.ParserRequest(license_key, txt=text, lang='en').sendReq())

    # If there are no errors in the request, print tokenization and lemmatization
    if parser_response.isSuccessful():
        print("\nThe request to 'Lemmatization, PoS and Parsing' finished successfully!\n")
        lemmatization = parser_response.getLemmatization(True)
        print("\tLemmatization and PoS Tagging:\n")
        for token, analyses in lemmatization.items():
            print("\t\tToken -->", token)
            for analysis in analyses:
                print("\t\t\tLemma -->", analysis['lemma'])
                print("\t\t\tPoS Tag -->", analysis['pos'], "\n")


except ValueError:
    e = sys.exc_info()[0]
    print("\nException: " + str(e))
Clear Crayfish

Respuestas similares a “Ejemplo de clasificación de texto de IPTC”

Preguntas similares a “Ejemplo de clasificación de texto de IPTC”

Más respuestas relacionadas con “Ejemplo de clasificación de texto de IPTC” en Python

Explore las respuestas de código populares por idioma

Explorar otros lenguajes de código