Estimación de máxima verosimilitud EM para la distribución de Weibull

24

Nota: estoy publicando una pregunta de un ex alumno mío que no puede publicar por su cuenta por razones técnicas.

Dada una muestra de iid de una distribución de Weibull con pdf ¿hay una representación variable faltante útil y, por lo tanto, un algoritmo EM (expectativa-maximización) asociado que podría usarse para encontrar el MLE de , en lugar de usarlo directamente optimización numérica?X1,...,Xnorte

Fk(X)=kXk-1mi-XkX>0 0
Fk(X)=Zsolk(X,z)rez
k
Xi'an
fuente
2
¿Hay alguna censura?
ocram
2
¿Qué le pasa a Newton Rhapson?
probabilidadislogica
2
@probabilityislogic: ¡no pasa nada con nada! A mi estudiante le gustaría saber si hay una versión EM, eso es todo ...
Xi'an
1
¿Podría dar un ejemplo de lo que está buscando en un contexto diferente y más simple, por ejemplo, con observaciones de una variable aleatoria gaussiana o uniforme? Cuando se observan todos los datos, yo (y algunos de los otros carteles, en función de sus comentarios) no veo cómo EM es relevante para su pregunta.
ahfoss
1
@probabilityislogic Creo que debería haber dicho: "Oh, ¿quiere decir que quiere USAR Newton Raphson?". Los Weibulls son familias regulares ... Creo que las soluciones de ML son únicas. Por lo tanto, EM no tiene nada más que "E", así que solo eres "M" ing ... ¡y encontrar las raíces de las ecuaciones de puntaje es la mejor manera de hacerlo!
AdamO

Respuestas:

7

Creo que la respuesta es sí, si he entendido la pregunta correctamente.

Escribe . A continuación, un tipo de algoritmo de EM de la iteración, a partir de, por ejemplo, k = 1 , eszi=xikk^=1

  • E z^i=xik^

  • M k^=n[(z^i1)logxi]

Este es un caso especial (el caso sin censura ni covariables) de la iteración sugerida para los modelos de riesgos proporcionales de Weibull por Aitkin y Clayton (1980). También se puede encontrar en la Sección 6.11 de Aitkin et al (1989).

  • Aitkin, M. y Clayton, D., 1980. El ajuste de distribuciones exponenciales, de Weibull y de valores extremos a datos de supervivencia censurados complejos utilizando GLIM. Estadística Aplicada , pp.156-163.

  • Aitkin, M., Anderson, D., Francis, B. e Hinde, J., 1989. Modelización estadística en GLIM . Prensa de la Universidad de Oxford. Nueva York.

DavidF
fuente
Muchas gracias David! ¡Tratar a como la variante faltante nunca se me pasó por la cabeza ...! xik
Xi'an
7

El Weibull MLE solo tiene solución numérica:

Deje conβ,

fλ,β(x)={βλ(xλ)β1e(xλ)β,x00,x<0
.β,λ>0

1) Likelihoodfunction :

Lx^(λ,β)=i=1Nfλ,β(xi)=i=1Nβλ(xiλ)β1e(xiλ)β=βNλNβei=1N(xiλ)βi=1Nxiβ1

log-Likelihoodfunction :

x^(λ,β):=lnLx^(λ,β)=NlnβNβlnλi=1N(xiλ)β+(β1)i=1Nlnxi

2) Problema MLE : 3) Maximizaciónpor0-gradientes: l

max(λ,β)R2x^(λ,β)s.t.λ>0β>0
0 Sigue: -Nβ1
lλ=Nβ1λ+βi=1Nxiβ1λβ+1=!0lβ=NβNlnλi=1Nln(xiλ)eβln(xiλ)+i=1Nlnxi=!0
Nβ1λ+βi=1Nxiβ1λβ+1=0β1λN+β1λi=1Nxiβ1λβ=01+1Ni=1Nxiβ1λβ=01Ni=1Nxiβ=λβ
λ=(1Ni=1Nxiβ)1β

λ into the second 0-gradient condition:

β=[i=1Nxiβlnxii=1Nxiβlnx¯]1

This equation is only numerically solvable, e.g. Newton-Raphson algorithm. β^ can then be placed into λ to complete the ML estimator for the Weibull distribution.

emcor
fuente
11
Unfortunately, this does not appear to answer the question in any discernible way. The OP is very clearly aware of Newton-Raphson and related approaches. The feasibility of N-R in no way precludes the existence of a missing-variable representation or associated EM algorithm. In my estimation, the question is not concerned at all with numerical solutions, but rather is probing for insight that might become apparent if an interesting missing-variable approach were demonstrated.
cardinal
@cardinal It is one thing to say there was only numerical solution, and it is another thing to show there is only numerical solution.
emcor
5
Dear @emcor, I think you may be misunderstanding what the question is asking. Perhaps reviewing the other answer and associated comment stream would be helpful. Cheers.
cardinal
@cardinal I agree it is not direct answer, but it is the exact expressions for the MLE's e.g. can be used to verify the EM.
emcor
4

Though this is an old question, it looks like there is an answer in a paper published here: http://home.iitk.ac.in/~kundu/interval-censoring-REVISED-2.pdf

In this work the analysis of interval-censored data, with Weibull distribution as the underlying lifetime distribution has been considered. It is assumed that censoring mechanism is independent and non-informative. As expected, the maximum likelihood estimators cannot be obtained in closed form. In our simulation experiments it is observed that the Newton-Raphson method may not converge many times. An expectation maximization algorithm has been suggested to compute the maximum likelihood estimators, and it converges almost all the times.

user3204720
fuente
1
Can you post a full citation for the paper at the link, in case it goes dead?
gung - Reinstate Monica
1
This is an EM algorithm, but does not do what I believe the OP wants. Rather, the E-step imputes the censored data, after which the M-step uses a fixed point algorithm with the complete data set. So the M-step is not in closed form (which I think is what the OP is looking for).
Cliff AB
1
@CliffAB: thank you for the link (+1) but indeed the EM is naturally induced in this paper by the censoring part. My former student was looking for a plain uncensored iid Weibull likelihood optimisation via EM.
Xi'an
-1

In this case the MLE and EM estimators are equivalent, since the MLE estimator is actually just a special case of the EM estimator. (I am assuming a frequentist framework in my answer; this isn't true for EM in a Bayesian context in which we're talking about MAP's). Since there is no missing data (just an unknown parameter), the E step simply returns the log likelihood, regardless of your choice of k(t). The M step then maximizes the log likelihood, yielding the MLE.

EM would be applicable, for example, if you had observed data from a mixture of two Weibull distributions with parameters k1 and k2, but you didn't know which of these two distributions each observation came from.

ahfoss
fuente
6
I think you may have misinterpreted the point of the question, which is: Does there exist some missing-variable interpretation from which one would obtain the given Weibull likelihood (and which would allow an EM-like algorithm to be applied)?
cardinal
4
The question statement in @Xi'an's post is quite clear. I think the reason it hasn't been answered is because any answer is likely nontrivial. (It's interesting, so I wish I had more time to think about it.) At any rate, your comment appears to betray a misunderstanding of the EM algorithm. Perhaps the following will serve as an antidote:
cardinal
6
Let f(x)=πφ(xμ1)+(1π)φ(xμ2) where φ is the standard normal density function. Let F(x)=xf(u)du. With U1,,Un iid standard uniform, take Xi=F1(Ui). Then, X1,,Xn is a sample from a Gaussian mixture model. We can estimate the parameters by (brute-force) maximum likelihood. Is there any missing data in our data-generation process? No. Does it have a latent-variable representation allowing for the use of an EM algorithm? Yes, absolutely.
cardinal
4
My apologies @cardinal; I think I have misunderstood two things about your latest post. Yes, in the GMM problem you could search R2×[0,1] via a brute force ML approach. Also, I now see that the original problem looks for a solution that involves introducing a latent variable that allows for an EM approach to estimating the parameter k in the given density kxk1exk. An interesting problem. Are there any examples of using EM like this in such a simple context? Most of my exposure to EM has been in the context of mixture problems and data imputation.
ahfoss
3
@ahfoss: (+1) to your latest comment. Yes! You got it. As for examples: (i) it shows up in censored data problems, (ii) classical applications like hidden Markov models, (iii) simple threshold models like probit models (e.g., imagine observing the latent Zi instead of Bernoulli Xi=1(Zi>μ)), (iv) estimating variance components in one-way random effects models (and much more complex mixed models), and (v) finding the posterior mode in a Bayesian hierarchical model. The simplest is probably (i) followed by (iii).
cardinal