Me encuentro con el coeficiente de dados para la similitud de volumen ( https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient ) y precisión ( https://en.wikipedia.org/wiki/Accuracy_and_precision )
Me parece que estas dos medidas son las mismas. ¿Alguna idea?
descriptive-statistics
roc
accuracy
precision-recall
auc
RockTheStar
fuente
fuente
Respuestas:
Estos no son lo mismo y a menudo se usan en diferentes contextos. La puntuación Dice se usa a menudo para cuantificar el rendimiento de los métodos de segmentación de imágenes . Ahí anotas alguna región de verdad fundamental en tu imagen y luego haces un algoritmo automatizado para hacerlo. Usted valida el algoritmo calculando la puntuación de los dados, que es una medida de cuán similares son los objetos. Por lo tanto, es el tamaño de la superposición de las dos segmentaciones dividido por el tamaño total de los dos objetos. Usando los mismos términos que describen la precisión, la puntuación de los dados es:Puntuación de dados= 2 ⋅ número de positivos verdaderos2 ⋅ número de falsos positivos + número de falsos positivos + número de falsos negativos
Entonces, el número de positivos verdaderos es el número que encuentra su método, el número de positivos es el número total de positivos que se pueden encontrar y el número de falsos positivos es el número de puntos negativos que su método clasifica como positivos.
El puntaje de dados no es solo una medida de cuántos positivos encuentra, sino que también penaliza los falsos positivos que encuentra el método, similar a la precisión. Por lo tanto, es más similar a la precisión que a la precisión. La única diferencia es el denominador, donde tiene el número total de positivos en lugar de solo los positivos que encuentra el método. Por lo tanto, el puntaje Dice también penaliza los aspectos positivos que su algoritmo / método no pudo encontrar.
Editar: en el caso de la segmentación de imágenes, digamos que tiene una máscara con verdad real, llamemos a la máscaraUNA como sugiere. Entonces, la máscara tiene valores 1 en los píxeles donde hay algo que está tratando de encontrar y cero. Ahora tiene un algoritmo para generar la imagen / máscara si , que también tiene que ser una imagen binaria, es decir, crea una máscara para su segmentación. Luego tenemos lo siguiente:
Si está haciendo esto para una publicación, escriba Dice con una D mayúscula, porque lleva el nombre de un tipo llamado Dice.
EDITAR: con respecto al comentario sobre una corrección: no uso la fórmula tradicional para calcular el coeficiente de dados, pero si lo traduzco a la notación en la otra respuesta se convierte en:
Lo cual es equivalente a la definición tradicional. Es más conveniente escribirlo como lo escribí originalmente para establecer la fórmula en términos de falsos positivos. La barra invertida es el conjunto menos.
fuente
El coeficiente de dados (también conocido como índice de similitud de dados) es el mismo que el puntaje F1 , pero no es lo mismo que la precisión. La principal diferencia podría ser el hecho de que la precisión tiene en cuenta los negativos verdaderos, mientras que el coeficiente Dice y muchas otras medidas solo manejan los negativos verdaderos como valores predeterminados sin interés (ver Los fundamentos de la evaluación del clasificador, Parte 1 ).
Por lo que puedo decir, el coeficiente de dados no se calcula como se describe en una respuesta anterior , que en realidad contiene la fórmula para el índice Jaccard (también conocido como "intersección sobre unión" en la visión por computadora).
El coeficiente de Dice y el índice de Jaccard están monotónicamente relacionados, y el índice de Tversky los generaliza a ambos, para leer más al respecto, ver F-score, Dice y Jaccard establecen similitud .
El coeficiente Dice también es la media armónica de Sensibilidad y Precisión, para ver por qué tiene sentido, lea ¿Por qué F-Measure es una media armónica y no una media aritmética de las medidas de Precisión y Recuperación? .
Para leer más sobre muchos de los términos en esta respuesta y sus relaciones, vea Evaluación de clasificadores binarios .
fuente