Pasos realizados en el análisis factorial en comparación con los pasos realizados en PCA

12

Sé cómo realizar PCA (análisis de componentes principales), pero me gustaría saber los pasos que deben usarse para el análisis factorial.

Para realizar PCA, consideremos algunas matrices , por ejemplo:UN

         3     1    -1
         2     4     0
         4    -2    -5
        11    22    20

He calculado su matriz de correlación B = corr(A):

        1.0000    0.9087    0.9250
        0.9087    1.0000    0.9970
        0.9250    0.9970    1.0000

Luego hice descomposición de valores propios [V,D] = eig(B), lo que resultó en vectores propios:

        0.5662    0.8209   -0.0740
        0.5812   -0.4613   -0.6703
        0.5844   -0.3366    0.7383

y valores propios:

        2.8877         0         0
             0    0.1101         0
             0         0    0.0022

La idea general detrás de la PCA es elegir componentes significativos, formar una nueva matriz que tenga vectores propios de columnas, luego debemos proyectar la matriz original (en PCA está centrada en cero). Pero en el análisis factorial, por ejemplo, deberíamos elegir componentes que tengan un valor singular superior a , y también estamos usando la rotación de factores, ¿cómo se hace? Por ejemplo en este caso.1

Ayúdenme a comprender los pasos del análisis factorial, en comparación con los pasos de PCA.

dato datuashvili
fuente

Respuestas:

24

Esta respuesta es para mostrar similitudes y diferencias computacionales concretas entre PCA y análisis factorial. Para las diferencias teóricas generales entre ellos, vea las preguntas / respuestas 1 , 2 , 3 , 4 , 5 .

A continuación haré, paso a paso, el análisis del componente principal (PCA) de los datos del iris (solo especies "setosa") y luego haré el análisis factorial de los mismos datos. El análisis factorial (FA) se realizará mediante el método del eje principal iterativo ( PAF ), que se basa en el enfoque PCA y, por lo tanto, permite comparar PCA y FA paso a paso.

Datos de iris (solo setosa):

  id  SLength   SWidth  PLength   PWidth species 

   1      5.1      3.5      1.4       .2 setosa 
   2      4.9      3.0      1.4       .2 setosa 
   3      4.7      3.2      1.3       .2 setosa 
   4      4.6      3.1      1.5       .2 setosa 
   5      5.0      3.6      1.4       .2 setosa 
   6      5.4      3.9      1.7       .4 setosa 
   7      4.6      3.4      1.4       .3 setosa 
   8      5.0      3.4      1.5       .2 setosa 
   9      4.4      2.9      1.4       .2 setosa 
  10      4.9      3.1      1.5       .1 setosa 
  11      5.4      3.7      1.5       .2 setosa 
  12      4.8      3.4      1.6       .2 setosa 
  13      4.8      3.0      1.4       .1 setosa 
  14      4.3      3.0      1.1       .1 setosa 
  15      5.8      4.0      1.2       .2 setosa 
  16      5.7      4.4      1.5       .4 setosa 
  17      5.4      3.9      1.3       .4 setosa 
  18      5.1      3.5      1.4       .3 setosa 
  19      5.7      3.8      1.7       .3 setosa 
  20      5.1      3.8      1.5       .3 setosa 
  21      5.4      3.4      1.7       .2 setosa 
  22      5.1      3.7      1.5       .4 setosa 
  23      4.6      3.6      1.0       .2 setosa 
  24      5.1      3.3      1.7       .5 setosa 
  25      4.8      3.4      1.9       .2 setosa 
  26      5.0      3.0      1.6       .2 setosa 
  27      5.0      3.4      1.6       .4 setosa 
  28      5.2      3.5      1.5       .2 setosa 
  29      5.2      3.4      1.4       .2 setosa 
  30      4.7      3.2      1.6       .2 setosa 
  31      4.8      3.1      1.6       .2 setosa 
  32      5.4      3.4      1.5       .4 setosa 
  33      5.2      4.1      1.5       .1 setosa 
  34      5.5      4.2      1.4       .2 setosa 
  35      4.9      3.1      1.5       .2 setosa 
  36      5.0      3.2      1.2       .2 setosa 
  37      5.5      3.5      1.3       .2 setosa 
  38      4.9      3.6      1.4       .1 setosa 
  39      4.4      3.0      1.3       .2 setosa 
  40      5.1      3.4      1.5       .2 setosa 
  41      5.0      3.5      1.3       .3 setosa 
  42      4.5      2.3      1.3       .3 setosa 
  43      4.4      3.2      1.3       .2 setosa 
  44      5.0      3.5      1.6       .6 setosa 
  45      5.1      3.8      1.9       .4 setosa 
  46      4.8      3.0      1.4       .3 setosa 
  47      5.1      3.8      1.6       .2 setosa 
  48      4.6      3.2      1.4       .2 setosa 
  49      5.3      3.7      1.5       .2 setosa 
  50      5.0      3.3      1.4       .2 setosa 

Tenemos 4 variables numéricas para incluir en nuestros análisis: SLength SWidth PLength PWidth , y los análisis se basarán en covarianzas , lo que equivale a decir que analizamos variables centradas . (Si optamos por analizar correlaciones que estarían analizando variables estandarizadas. El análisis basado en correlaciones produce resultados diferentes que el análisis basado en covarianzas.) No mostraré los datos centrados. Llamemos a estos matriz de datos X.

Pasos de PCA :

Step 0. Compute centered variables X and covariance matrix S.

Covariances S (= X'*X/(n-1) matrix: see /stats//a/22520/3277)
.12424898   .09921633   .01635510   .01033061
.09921633   .14368980   .01169796   .00929796
.01635510   .01169796   .03015918   .00606939
.01033061   .00929796   .00606939   .01110612

Step 1.1. Decompose data X or matrix S to get eigenvalues and right eigenvectors.
          You may use svd or eigen decomposition (see /stats//q/79043/3277)

Eigenvalues L (component variances) and the proportion of overall variance explained
           L            Prop
PC1   .2364556901   .7647237023 
PC2   .0369187324   .1193992401 
PC3   .0267963986   .0866624997 
PC4   .0090332606   .0292145579    

Eigenvectors V (cosines of rotation of variables into components)
              PC1           PC2           PC3           PC4
SLength   .6690784044   .5978840102  -.4399627716  -.0360771206 
SWidth    .7341478283  -.6206734170   .2746074698  -.0195502716 
PLength   .0965438987   .4900555922   .8324494972  -.2399012853 
PWidth    .0635635941   .1309379098   .1950675055   .9699296890 

Step 1.2. Decide on the number M of first PCs you want to retain.
          You may decide it now or later on - no difference, because in PCA values of components do not depend on M.
          Let's M=2. So, leave only 2 first eigenvalues and 2 first eigenvector columns.

Step 2. Compute loadings A. May skip if you don't need to interpret PCs anyhow.
Loadings are eigenvectors normalized to respective eigenvalues: A value = V value * sqrt(L value)
Loadings are the covariances between variables and components.

Loadings A
              PC1           PC2           
SLength    .32535081     .11487892
SWidth     .35699193    -.11925773
PLength    .04694612     .09416050
PWidth     .03090888     .02515873

Sums of squares in columns of A are components' variances, the eigenvalues

Standardized (rescaled) loadings.
St. loading is Loading / sqrt(Variable's variance);
these loadings are computed if you analyse covariances, and are suitable for interpretation of PCs
(if you analyse correlations, A are already standardized).
              PC1           PC2      
SLength    .92300804     .32590717
SWidth     .94177127    -.31461076
PLength    .27032731     .54219930
PWidth     .29329327     .23873031

Step 3. Compute component scores (values of PCs).

Regression coefficients B to compute Standardized component scores are: B = A*diag(1/L) = inv(S)*A
B
              PC1           PC2  
SLength   1.375948338   3.111670112 
SWidth    1.509762499  -3.230276923 
PLength    .198540883   2.550480216 
PWidth     .130717448    .681462580 

Standardized component scores (having variances 1) = X*B
      PC1           PC2
  .219719506   -.129560000 
 -.810351411    .863244439 
 -.803442667   -.660192989 
-1.052305574   -.138236265 
  .233100923   -.763754703 
 1.322114762    .413266845 
 -.606159168  -1.294221106 
 -.048997489    .137348703 
  ...

Raw component scores (having variances = eigenvalues) can of course be computed from standardized ones.
In PCA, they are also computed directly as X*V
      PC1           PC2
  .106842367   -.024893980 
 -.394047228    .165865927 
 -.390687734   -.126851118 
 -.511701577   -.026561059 
  .113349309   -.146749722 
  .642900908    .079406116 
 -.294755259   -.248674852 
 -.023825867    .026390520 
  ...

Pasos de FA (método de extracción iterativo del eje principal):

Step 0.1. Compute centered variables X and covariance matrix S.

Step 0.2. Decide on the number of factors M to extract.
          (There exist several well-known methods in help to decide, let's omit mentioning them. Most of them require that you do PCA first.)
          Note that you have to select M before you proceed further because, unlike in PCA, in FA loadings and factor values depend on M.
          Let's M=2.

Step 0.3. Set initial communalities on the diagonal of S.
          Most often quantities called "images" are used as initial communalities (see /stats//a/43224/3277).
          Images are diagonal elements of matrix S-D, where D is diagonal matrix with diagonal = 1 / diagonal of inv(S).
          (If S is correlation matrix, images are the squared multiple correlation coefficients.)

With covariance matrix, image is the squared multiple correlation multiplied by the variable variance.
S with images as initial communalities on the diagonal
.07146025  .09921633  .01635510  .01033061
.09921633  .07946595  .01169796  .00929796
.01635510  .01169796  .00437017  .00606939
.01033061  .00929796  .00606939  .00167624

Step 1. Decompose that modified S to get eigenvalues and right eigenvectors.
        Use eigen decomposition, not svd. (Usually some last eigenvalues will be negative.)

Eigenvalues L
F1   .1782099114
F2   .0062074477
    -.0030958623
    -.0243488794

Eigenvectors V
               F1            F2 
SLength   .6875564132   .0145988554   .0466389510   .7244845480
SWidth    .7122191394   .1808121121  -.0560070806  -.6759542030
PLength   .1154657746  -.7640573143   .6203992617  -.1341224497
PWidth    .0817173855  -.6191205651  -.7808922917  -.0148062006

Leave the first M=2 values in L and columns in V.

Step 2.1. Compute loadings A.
Loadings are eigenvectors normalized to respective eigenvalues: A value = V value * sqrt(L value)
               F1            F2 
SLength   .2902513607   .0011502052
SWidth    .3006627098   .0142457085
PLength   .0487437795  -.0601980567
PWidth    .0344969255  -.0487788732

Step 2.2. Compute row sums of squared loadings. These are updated communalities.
          Reset the diagonal of S to them

S with updated communalities on the diagonal
.08424718  .09921633  .01635510  .01033061
.09921633  .09060101  .01169796  .00929796
.01635510  .01169796  .00599976  .00606939
.01033061  .00929796  .00606939  .00356942

REPEAT Steps 1-2 many times (iterations, say, 25)

Extraction of factors is done.

Final loadings A and communalities (row sums of squares in A).
Loadings are the covariances between variables and factors.
Communality is the degree to what the factors load a variable, it is the "common variance" in the variable.
               F1            F2                        Comm
SLength   .3125767362   .0128306509                .0978688416
SWidth    .3187577564  -.0323523347                .1026531808
PLength   .0476237419   .1034495601                .0129698323
PWidth    .0324478281   .0423861795                .0028494498

Sums of squares in columns of A are factors' variances.

Standardized (rescaled) loadings and communalities.
St. loading is Loading / sqrt(Variable's variance);
these loadings are computed if you analyse covariances, and are suitable for interpretation of Fs
(if you analyse correlations, A are already standardized).
               F1            F2                        Comm
SLength   .8867684574   .0364000747                .7876832626
SWidth    .8409066701  -.0853478652                .7144082859
PLength   .2742292179   .5956880078                .4300458666
PWidth    .3078962532   .4022009053                .2565656710

Step 3. Compute factor scores (values of Fs).
        Unlike component scores in PCA, factor scores are not exact, they are reasonable approximations.
        Several methods of computation exist (/stats//q/126885/3277).
        Here is regressional method which is the same as the one used in PCA.

Regression coefficients B to compute Standardized factor scores are: B = inv(S)*A (original S is used)
B
              F1           F2  
SLength  1.597852081   -.023604439
SWidth   1.070410719   -.637149341
PLength   .212220217   3.157497050
PWidth    .423222047   2.646300951

Standardized factor scores = X*B
These "Standardized factor scores" have variance not 1; the variance of a factor is SSregression of the factor by variables / (n-1).
      F1           F2
  .194641800   -.365588231
 -.660133976   -.042292672
 -.786844270   -.480751358
-1.011226507    .216823430
  .141897664   -.426942721
 1.250472186    .848980006
 -.669003108   -.025440982
 -.050962459    .016236852
  ...

Factors are extracted as orthogonal. And they are.
However, regressionally computed factor scores are not fully uncorrelated.
Covariance matrix between computed factor scores.
      F1      F2
F1   .864   .026
F2   .026   .459

Factor variances are their squared loadings.
You can easily recompute the above "standardized" factor scores to "raw" factor scores having those variances:
raw score = st. score * sqrt(factor variance / st. scores variance).

Después de la extracción (que se muestra arriba), puede tener lugar una rotación opcional. La rotación se realiza con frecuencia en FA. A veces se realiza en PCA exactamente de la misma manera. La rotación rota la matriz de carga A en alguna forma de "estructura simple" que facilita la interpretación de los factores en gran medida (luego los puntajes rotados pueden ser recalculados). Dado que la rotación no es lo que diferencia a FA de PCA matemáticamente y porque es un tema amplio por separado, no lo tocaré.

ttnphns
fuente
Cuando habla de "imágenes" como comunidades iniciales, le da un enlace a otra respuesta suya (que analiza varios métodos para elegir comunidades comunes), pero no menciona "imágenes". Suena interesante, ¿te gustaría ampliar esa vieja respuesta?
ameba dice Reinstate Monica
pero el análisis factorial me parece un poco extraño, ahora estoy pensando en ello y no podía adivinarlo
dato datuashvili