Obtenga la distancia más cercana con dos geodataframes en pandas

14

Aquí está mi primer geodatframe:

!pip install geopandas
import pandas as pd
import geopandas

city1 = [{'City':"Buenos Aires","Country":"Argentina","Latitude":-34.58,"Longitude":-58.66},
           {'City':"Brasilia","Country":"Brazil","Latitude":-15.78 ,"Longitude":-70.66},
         {'City':"Santiago","Country":"Chile ","Latitude":-33.45 ,"Longitude":-70.66 }]
city2 =  [{'City':"Bogota","Country":"Colombia ","Latitude":4.60 ,"Longitude":-74.08},
           {'City':"Caracas","Country":"Venezuela","Latitude":10.48  ,"Longitude":-66.86}]
city1df = pd.DataFrame(city1)
city2df = pd.DataFrame(city2)
gcity1df = geopandas.GeoDataFrame(
    city1df, geometry=geopandas.points_from_xy(city1df.Longitude, city1df.Latitude))
gcity2df = geopandas.GeoDataFrame(
    city2df, geometry=geopandas.points_from_xy(city2df.Longitude, city2df.Latitude))

Ciudad1

           City    Country  Latitude  Longitude                     geometry
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)
1      Brasilia     Brazil    -15.78     -47.91  POINT (-47.91000 -15.78000)
2      Santiago      Chile    -33.45     -70.66  POINT (-70.66000 -33.45000)

y mi segundo geodataframe: City2:

         City    Country  Latitude  Longitude                     geometry
1        Bogota   Colombia      4.60     -74.08    POINT (-74.08000 4.60000)
2       Caracas  Venezuela     10.48     -66.86   POINT (-66.86000 10.48000)

Me gustaría un tercer marco de datos con la ciudad más cercana de city1 a city2 con una distancia como:

           City    Country  Latitude  Longitude                     geometry    Nearest    Distance
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)    Bogota    111 Km

Aquí está mi solución real usando geodjango y dict (pero es demasiado largo):

from django.contrib.gis.geos import GEOSGeometry
result = []
dict_result = {}
for city01 in city1 :
  dist = 99999999
  pnt = GEOSGeometry('SRID=4326;POINT( '+str(city01["Latitude"])+' '+str(city01['Longitude'])+')')
  for city02 in city2:
    pnt2 = GEOSGeometry('SRID=4326;POINT('+str(city02['Latitude'])+' '+str(city02['Longitude'])+')')
    distance_test = pnt.distance(pnt2) * 100
    if distance_test < dist :
      dist = distance_test
  result.append(dist)
  dict_result[city01['City']] = city02['City']

Aquí están mis intentos:

from shapely.ops import nearest_points
# unary union of the gpd2 geomtries 
pts3 = gcity2df.geometry.unary_union
def Euclidean_Dist(df1, df2, cols=['x_coord','y_coord']):
    return np.linalg.norm(df1[cols].values - df2[cols].values,
                   axis=1)
def near(point, pts=pts3):
     # find the nearest point and return the corresponding Place value
     nearest = gcity2df.geometry == nearest_points(point, pts)[1]

     return gcity2df[nearest].City
gcity1df['Nearest'] = gcity1df.apply(lambda row: near(row.geometry), axis=1)
gcity1df

aquí :

    City    Country     Latitude    Longitude   geometry    Nearest
0   Buenos Aires    Argentina   -34.58  -58.66  POINT (-58.66000 -34.58000)     Bogota
1   Brasilia    Brazil  -15.78  -70.66  POINT (-70.66000 -15.78000)     Bogota
2   Santiago    Chile   -33.45  -70.66  POINT (-70.66000 -33.45000)     Bogota

Saludos

usuario462794
fuente
¡Hola y bienvenido a StackOverflow! Parece que tiene la impresión de que StackOverflow es un sitio donde publica un problema y obtiene un código a cambio. De hecho, este no es el caso. Su pregunta probablemente se cerrará o incluso se eliminará en breve. Para evitar que esto suceda en el futuro, realice el recorrido y eche un vistazo al centro de ayuda . En particular, familiarícese con lo que se considera sobre el tema por aquí
azro
Además, cuando publique sobre DF, publique código pyhton con el contenido de DF, para todas las personas que
desean
@azro he editado y agregado mi solución al problema y mis datos iniciales.
user462794
¿son sus ciudades solo en América del Sur? Si no, ¿qué tan lejos pueden estar el uno del otro? ¿Cuántas ciudades puede haber en city1 y cuántas en city2? ¿Es importante encontrar la solución más rápida, o es una solución más simple que se ejecuta en un tiempo razonable? Si este es el caso, ¿cuál sería un tiempo razonable?
Walter Tross
@WalterTross mi ciudad está en todo el mundo, y estoy buscando la solución fastet. Gracias
user462794

Respuestas:

11

En primer lugar, fusiono dos marcos de datos por combinación cruzada. Y luego, encontré la distancia entre dos puntos usando mapPython. Yo uso map, porque la mayoría de las veces es mucho más rápido que apply, itertuples, iterrowsetc. (Referencia: https://stackoverflow.com/a/52674448/8205554 )

Por último, agrupo por marco de datos y obtengo valores mínimos de distancia.

Aquí hay bibliotecas,

import pandas as pd
import geopandas
import geopy.distance
from math import radians, cos, sin, asin, sqrt

Aquí están las funciones utilizadas,

def dist1(p1, p2):
    lon1, lat1, lon2, lat2 = map(radians, [p1.x, p1.y, p2.x, p2.y])

    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 

    return c * 6373

def dist2(p1, p2):
    lon1, lat1, lon2, lat2 = map(radians, [p1[0], p1[1], p2[0], p2[1]])

    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 

    return c * 6373

def dist3(p1, p2):
    x = p1.y, p1.x
    y = p2.y, p2.x

    return geopy.distance.geodesic(x, y).km

def dist4(p1, p2):
    x = p1[1], p1[0]
    y = p2[1], p2[0]

    return geopy.distance.geodesic(x, y).km

Y datos,

city1 = [
  {
    'City': 'Buenos Aires',
    'Country': 'Argentina',
    'Latitude': -34.58,
    'Longitude': -58.66
  },
  {
    'City': 'Brasilia',
    'Country': 'Brazil',
    'Latitude': -15.78,
    'Longitude': -70.66
  },
  {
    'City': 'Santiago',
    'Country': 'Chile ',
    'Latitude': -33.45,
    'Longitude': -70.66
  }
]

city2 = [
  {
    'City': 'Bogota',
    'Country': 'Colombia ',
    'Latitude': 4.6,
    'Longitude': -74.08
  },
  {
    'City': 'Caracas',
    'Country': 'Venezuela',
    'Latitude': 10.48,
    'Longitude': -66.86
  }
]


city1df = pd.DataFrame(city1)
city2df = pd.DataFrame(city2)

Unión cruzada con geopandasmarcos de datos,

gcity1df = geopandas.GeoDataFrame(
    city1df, 
    geometry=geopandas.points_from_xy(city1df.Longitude, city1df.Latitude)
)
gcity2df = geopandas.GeoDataFrame(
    city2df, 
    geometry=geopandas.points_from_xy(city2df.Longitude, city2df.Latitude)
)

# cross join geopandas
gcity1df['key'] = 1
gcity2df['key'] = 1
merged = gcity1df.merge(gcity2df, on='key')

mathfunciones y geopandas,

# 6.64 ms ± 588 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(map(dist1, merged['geometry_x'], merged['geometry_y']))

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'geometry_x': 'geometry',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude                     geometry  \
2      Brasilia     Brazil    -15.78     -70.66  POINT (-70.66000 -15.78000)   
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)   
4      Santiago     Chile     -33.45     -70.66  POINT (-70.66000 -33.45000)   

  Nearest     Distance  
2  Bogota  2297.922808  
0  Bogota  4648.004515  
4  Bogota  4247.586882 

geopyy geopandas,

# 9.99 ms ± 764 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(map(dist3, merged['geometry_x'], merged['geometry_y']))

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'geometry_x': 'geometry',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude                     geometry  \
2      Brasilia     Brazil    -15.78     -70.66  POINT (-70.66000 -15.78000)   
0  Buenos Aires  Argentina    -34.58     -58.66  POINT (-58.66000 -34.58000)   
4      Santiago     Chile     -33.45     -70.66  POINT (-70.66000 -33.45000)   

  Nearest     Distance  
2  Bogota  2285.239605  
0  Bogota  4628.641817  
4  Bogota  4226.710978 

Si quieres usar en pandaslugar de geopandas,

# cross join pandas
city1df['key'] = 1
city2df['key'] = 1
merged = city1df.merge(city2df, on='key')

Con mathfunciones,

# 8.65 ms ± 2.21 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(
    map(
        dist2, 
        merged[['Longitude_x', 'Latitude_x']].values, 
        merged[['Longitude_y', 'Latitude_y']].values
    )
)

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude Nearest     Distance
2      Brasilia     Brazil    -15.78     -70.66  Bogota  2297.922808
0  Buenos Aires  Argentina    -34.58     -58.66  Bogota  4648.004515
4      Santiago     Chile     -33.45     -70.66  Bogota  4247.586882

con geopy,

# 9.8 ms ± 807 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit

# find distance
merged['dist'] = list(
    map(
        dist4, 
        merged[['Longitude_x', 'Latitude_x']].values, 
        merged[['Longitude_y', 'Latitude_y']].values
    )
)

mapping = {
    'City_x': 'City',
    'Country_x': 'Country',
    'Latitude_x': 'Latitude',
    'Longitude_x': 'Longitude',
    'City_y': 'Nearest',
    'dist': 'Distance'
}

nearest = merged.loc[merged.groupby(['City_x', 'Country_x'])['dist'].idxmin()]
nearest.rename(columns=mapping)[list(mapping.values())]

           City    Country  Latitude  Longitude Nearest     Distance
2      Brasilia     Brazil    -15.78     -70.66  Bogota  2285.239605
0  Buenos Aires  Argentina    -34.58     -58.66  Bogota  4628.641817
4      Santiago     Chile     -33.45     -70.66  Bogota  4226.710978
E. Zeytinci
fuente
esas distancias se calculan con una fórmula aproximada que no tiene en cuenta el aplanamiento de la Tierra. Usando geopy.distance.distance()las mismas 3 distancias son (redondeadas) 2285, 4629y 4227km.
Walter Tross
Compruebo estos valores con el enlace: distance.to/-33.45,-70.66/4.6,-74.08 ¿Qué pasa?
E. Zeytinci
aparte del hecho de que confío más geopy, como sitio web confío más en edwilliams.org/gccalc.htm , lo cual concuerda geopy. El sitio web de la NOAA, nhc.noaa.gov/gccalc.shtml , dice que se basa en el primero, pero luego arroja resultados diferentes. Probablemente se basa en una versión anterior de la anterior.
Walter Tross
5

Creo que es bastante difícil encontrar una solución con una complejidad temporal mejor que O (m · n) , donde myn son los tamaños de city1ycity2 . Manteniendo la comparación de distancia (la única operación O (m · n)) simple, y aprovechando las operaciones vectorizadas proporcionadas por numpy y pandas, la velocidad no debería ser un problema para ningún tamaño de entrada razonable.

La idea es que, para comparar distancias en una esfera, puede comparar las distancias entre los puntos en 3D. La ciudad más cercana es también la más cercana que pasa por la esfera. Además, normalmente toma raíces cuadradas para calcular distancias, pero si solo necesita compararlas, puede evitar las raíces cuadradas.

from geopy.distance import distance as dist
import numpy as np
import pandas as pd

def find_closest(lat1, lng1, lat2, lng2):
    def x_y_z_of_lat_lng_on_unit_sphere(lat, lng):
        rad_lat, rad_lng = np.radians(lat), np.radians(lng)
        sin_lat, sin_lng = np.sin(rad_lat), np.sin(rad_lng)
        cos_lat, cos_lng = np.cos(rad_lat), np.cos(rad_lng)
        return cos_lat * cos_lng, cos_lat * sin_lng, sin_lat
    x1, y1, z1 = x_y_z_of_lat_lng_on_unit_sphere(lat1, lng1)
    x2, y2, z2 = x_y_z_of_lat_lng_on_unit_sphere(lat2, lng2)
    return pd.Series(map(lambda x, y, z:
                         ((x2-x)**2 + (y2-y)**2 + (z2-z)**2).idxmin(),
                         x1, y1, z1))

city1 = [{"City":"Tokyo",    "Ctry":"JP", "Latitude": 35.68972, "Longitude": 139.69222},
         {"City":"Pretoria", "Ctry":"ZA", "Latitude":-25.71667, "Longitude": 28.28333},
         {"City":"London",   "Ctry":"GB", "Latitude": 51.50722, "Longitude": -0.12574}]
city2 = [{"City":"Seattle",  "Ctry":"US", "Latitude": 47.60972, "Longitude":-122.33306},
         {"City":"Auckland", "Ctry":"NZ", "Latitude":-36.84446, "Longitude": 174.76364}]
city1df = pd.DataFrame(city1)
city2df = pd.DataFrame(city2)

closest = find_closest(city1df.Latitude, city1df.Longitude, city2df.Latitude, city2df.Longitude)

resultdf = city1df.join(city2df, on=closest, rsuffix='2')
km = pd.Series(map(lambda latlng1, latlng2: round(dist(latlng1, latlng2).km),
                   resultdf[['Latitude',  'Longitude' ]].to_numpy(),
                   resultdf[['Latitude2', 'Longitude2']].to_numpy()))
resultdf['Distance'] = km
print(resultdf.to_string())
#        City Ctry  Latitude  Longitude     City2 Ctry2  Latitude2  Longitude2  Distance
# 0     Tokyo   JP  35.68972  139.69222   Seattle    US   47.60972  -122.33306      7715
# 1  Pretoria   ZA -25.71667   28.28333  Auckland    NZ  -36.84446   174.76364     12245
# 2    London   GB  51.50722   -0.12574   Seattle    US   47.60972  -122.33306      7723

Tenga en cuenta que cualquier solución que use la latitud y la longitud como si fueran coordenadas cartesianas es incorrecta, porque al moverse hacia los polos los meridianos (líneas de igual longitud) se acercan entre sí.

Walter Tross
fuente
3

Esta solución probablemente no sea la forma más rápida de resolver su problema, pero creo que funcionará.

#New dataframe is basicly a copy of first but with more columns
gcity3df = gcity1df.copy()
gcity3df["Nearest"] = None
gcity3df["Distance"] = None

#For each city (row in gcity3df) we will calculate the nearest city from gcity2df and 
fill the Nones with results

for index, row in gcity3df.iterrows():
    #Setting neareast and distance to None, 
    #we will be filling those variables with results

    nearest = None
    distance = None
    for df2index, df2row in gcity2df.iterrows():
        d = row.geometry.distance(df2row.geometry)
        #If df2index city is closer than previous ones, replace nearest with it
        if distance is None or d < distance:
            distance = d
            nearest = df2row.City 
    #In the end we appends the closest city to gdf
    gcity3df.at[index, "Nearest"] = nearest
    gcity3df.at[index, "Distance"] = distance

Si necesita trabajar en metros y no en grados, siempre puede volver a proyectar su capa (también borrará el error que Walter quiere decir). Puede hacerlo gcity3df = gcity3df.to_crs({'init': 'epsg:XXXX'})donde XXXX es el código epsg para los crs que se utilizan en su región mundial.

Mativane
fuente