Manera eficiente de soltar filas con tiempos superpuestos

9

Tengo un conjunto de datos largo con columnas que representan las horas de inicio y finalización, y deseo eliminar una fila si se superpone con otra y tiene una prioridad más alta (por ejemplo, 1 es la prioridad más alta). Mi ejemplo de datos es

library(tidyverse)
library(lubridate)
times_df <- tibble(start = as_datetime(c("2019-10-05 14:05:25", 
    "2019-10-05 17:30:20", 
    "2019-10-05 17:37:00", 
    "2019-10-06 04:43:55", 
    "2019-10-06 04:53:45")), 
    stop = as_datetime(c("2019-10-05 14:19:20",
    "2019-10-05 17:45:15", 
    "2019-10-05 17:50:45", 
    "2019-10-06 04:59:00",
    "2019-10-06 05:07:10")), priority = c(5,3,4,3,4))

La forma en que he encontrado ataca el problema al revés al encontrar las superposiciones con un valor de prioridad más alto y luego usar un anti_joinpara eliminarlas del marco de datos original. Este código no funciona si hay tres períodos superpuestos en el mismo punto de tiempo y estoy seguro de que hay una forma más eficiente y funcional de hacerlo.

dropOverlaps <- function(df) {
    drops <- df %>% 
        filter(stop > lead(start) | lag(stop) > start) %>% 
        mutate(group = ({seq(1, nrow(.)/2)} %>% 
        rep(each=2))) %>% 
        group_by(group) %>% 
        filter(priority == max(priority))
    anti_join(df, drops)
}

dropOverlaps(times_df)
#> Joining, by = c("start", "stop", "priority")
#> # A tibble: 3 x 3
#>   start               stop                priority
#>   <dttm>              <dttm>                 <dbl>
#> 1 2019-10-05 14:05:25 2019-10-05 14:19:20        5
#> 2 2019-10-05 17:30:20 2019-10-05 17:45:15        3
#> 3 2019-10-06 04:43:55 2019-10-06 04:59:00        3

¿Alguien puede ayudarme a obtener la misma salida pero con una función más limpia? Bonificación si puede manejar una entrada con tres o más períodos de tiempo que se superponen.

pgcudahy
fuente
2
Si lo desea, puede verificar todas las combinaciones con combn, aunque puede resultar costoso si tiene muchas filas. times_df %>% mutate(interval = interval(start, stop)) %>% {combn(nrow(.), 2, function(x) if (int_overlaps(.$interval[x[1]], .$interval[x[2]])) x[which.min(.$priority[x])], simplify = FALSE)} %>% unlist() %>% {slice(times_df, -.)}
alistaire
Podrías intentar jugar un poco para plyrangesadaptar IRanges / GRanges (utilizado para encontrar superposiciones entre genomas) para el tidyverse. Creo que podría transformar sus tiempos en rangos "genómicos" al convertir sus días + horas en un número entero de horas ("coromosoma") y sus minutos + segundos en un número entero de segundos ("nucleótidos"). Si observara la salida de pair_overlaps(y usó una columna de ID para eliminar las superposiciones de uno mismo), podría mantener su prioridad y hacer un buen filtro de los resultados + inner_join con su tabla original. Es hacky pero debería optimizar la facilidad de codificación + eficiencia.
GenesRus
O simplemente puede usar IRanges con fechas y horas convertidas en números. Un ejemplo está aquí: stackoverflow.com/questions/40647177/…
GenesRus
2
Acabo de encontrar data.table :: foverlaps y esta sería una mejor solución que las herramientas genómicas que sugerí. No tengo tiempo para resolver la lógica de qué guardar, pero debería ser solucionable.
GenesRus

Respuestas:

4

Aquí hay una data.tablesolución que utiliza foverlapspara detectar los registros superpuestos (como ya lo mencionó @GenesRus). Los registros superpuestos se asignan a grupos para filtrar el registro con máx. prioridad en el grupo. Agregué dos registros más a sus datos de ejemplo, para mostrar que este procedimiento también funciona para tres o más registros superpuestos:

Editar: modifiqué y traduje la solución de @ pgcudahy a la data.tableque da un código aún más rápido:

library(data.table)
library(lubridate)

times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-06 04:53:47"
    )
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-06 05:07:12"
    )
  ),
  priority = c(5, 3, 4, 3, 4, 5, 6)
)

resultDT <- setDT(times_df, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
                                         !(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]

# old approach ------------------------------------------------------------
# times_dt <- as.data.table(times_df)
# setkey(times_dt, start, stop)[, index := .I]
# overlaps_dt <- foverlaps(times_dt, times_dt, type = "any", which = TRUE)[xid != yid][, group := fifelse(xid > yid, yes = paste0(yid, "_", xid), no = paste0(xid, "_", yid))]
# overlaps_merged <- merge(times_dt, overlaps_dt, by.x = "index", by.y = "xid")[, .(delete_index = index[priority == max(priority)]), by = "group"]
# result_dt <- times_dt[!unique(overlaps_merged$delete_index)][, index := NULL]

Para más detalles, ver ?foverlaps- Hay algunas características más útiles implementadas para controlar lo que se considera un solapamiento como maxgap, minoverlapo type(cualquiera, dentro, inicio, final e iguales).


Actualización - nuevo punto de referencia

Unit: microseconds
          expr       min         lq      mean    median        uq        max neval
          Paul 25572.550 26105.2710 30183.930 26514.342 29614.272 153810.600   100
           MKa  5100.447  5276.8350  6508.333  5401.275  5832.270  23137.879   100
      pgcudahy  3330.243  3474.4345  4284.640  3556.802  3748.203  21241.260   100
 ismirsehregal   711.084   913.3475  1144.829  1013.096  1433.427   2316.159   100

Código de referencia:

#### library ----

library(dplyr)
library(lubridate)
library(igraph)
library(data.table)
library(microbenchmark)

#### data ----

times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-06 04:53:47"
    )
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-06 05:07:12"
    )
  ),
  priority = c(5, 3, 4, 3, 4, 5, 6)
)

times_tib <- as_tibble(times_df)
times_dt <- as.data.table(times_df)

#### group_interval function ----

# buffer to take a form similar to: days(1), weeks(2), etc.
group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  # apply buffer period to intervals
  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  # Find groups via graph theory See igraph package
  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  # create a 2 column df with row (index) and group number, arrange on row number and return distinct values
  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  # returns
  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group

}

#### benchmark ----

library(igraph)
library(data.table)
library(dplyr)
library(lubridate)
library(microbenchmark)

df_Paul <- df_MKa <- df_pgcudahy <- df_ismirsehregal <- times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)


benchmarks <- microbenchmark(Paul = {
  group_interval <- function(start, end, buffer = 0) {

    dat <- tibble(rid = 1:length(start),
                  start = start,
                  end = end,
                  intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                        is.na(start) ~ interval(end, end),
                                        is.na(end) ~ interval(start, start),
                                        TRUE ~ interval(NA, NA)))

    int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
    int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

    df_overlap <- bind_cols(
      expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
      expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
      mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
      rename("row" = "Var1", "col" = "Var2")

    dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
    groups <- components(dat_graph)$membership[df_overlap$row]

    df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
      unique()

    left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
  }

  times_tib <- as_tibble(df_Paul)

  mutate(times_tib, group = group_interval(start, stop)) %>%
    group_by(group) %>%
    top_n(1, desc(priority)) %>%
    ungroup() %>%
    select(-group)
},
MKa = {
  df_MKa$id <- 1:nrow(df_MKa)

  # Create consolidated df which we will use to check if stop date is in between start and stop
  my_df <- bind_rows(replicate(n = nrow(df_MKa), expr = df_MKa, simplify = FALSE))
  my_df$stop_chk <- rep(df_MKa$stop, each = nrow(df_MKa))

  # Flag if stop date sits in between start and stop
  my_df$chk <- my_df$stop_chk >= my_df$start & my_df$stop_chk <= my_df$stop
  my_df$chk_id <- df_MKa[match(my_df$stop_chk, df_MKa$stop), "id"]

  # Using igrpah to cluster ids to create unique groups
  # this will identify any overlapping groups
  library(igraph)
  g <- graph.data.frame(my_df[my_df$chk == TRUE, c("id", "chk_id")])
  df_g <- data.frame(clusters(g)$membership)
  df_g$chk_id <- row.names(df_g)

  # copy the unique groups to the df
  my_df$new_id <- df_g[match(my_df$chk_id, df_g$chk_id), "clusters.g..membership"]
  my_df %>% 
    filter(chk == TRUE) %>%
    arrange(priority) %>%
    filter(!duplicated(new_id)) %>%
    select(start, stop, priority) %>%
    arrange(start)
}, pgcudahy = {
  df_pgcudahy %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                              (priority > lead(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                              (priority > lag(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)
}, ismirsehregal = {
  setDT(df_ismirsehregal, key="start")[!(stop >= shift(start, type="lead", fill = TRUE) & priority > shift(priority, type="lead", fill = TRUE)) &
                                       !(start <= shift(stop, type="lag", fill = FALSE) & priority > shift(priority, type="lag", fill = TRUE))]
})

benchmarks
ismirsehregal
fuente
1

Tengo una función auxiliar que agrupa datos superpuestos / datos de tiempo usando el paquete igraph (puede incluir un búfer de superposición, es decir, los terminales están dentro de 1 minuto ...)

Lo utilicé para agrupar sus datos en función de los intervalos en lubridate, luego hice algunos cambios de datos para obtener solo la entrada de máxima prioridad de los tiempos superpuestos.

No estoy seguro de qué tan bien escalará.

#### library ----

library(dplyr)
library(lubridate)
library(igraph)

#### data ----

times_df <- tibble(start = as_datetime(c("2019-10-05 14:05:25", 
                                         "2019-10-05 17:30:20", 
                                         "2019-10-05 17:37:00", 
                                         "2019-10-06 04:43:55", 
                                         "2019-10-06 04:53:45")), 
                   stop = as_datetime(c("2019-10-05 14:19:20",
                                        "2019-10-05 17:45:15", 
                                        "2019-10-05 17:50:45", 
                                        "2019-10-06 04:59:00",
                                        "2019-10-06 05:07:10")), priority = c(5,3,4,3,4))

#### group_interval function ----

# buffer to take a form similar to: days(1), weeks(2), etc.
group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  # apply buffer period to intervals
  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  # Find groups via graph theory See igraph package
  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  # create a 2 column df with row (index) and group number, arrange on row number and return distinct values
  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  # returns
  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group

}

#### data munging ----

mutate(times_df, group = group_interval(start, stop)) %>%
  group_by(group) %>%
  top_n(1, desc(priority)) %>% # not sure why desc is needed, but top_n was giving the lower 
  ungroup() %>%
  select(-group)

Lo que da:

    # A tibble: 3 x 3
      start               stop                priority
      <dttm>              <dttm>                 <dbl>
    1 2019-10-05 14:05:25 2019-10-05 14:19:20        5
    2 2019-10-05 17:30:20 2019-10-05 17:45:15        3
    3 2019-10-06 04:43:55 2019-10-06 04:59:00        3
Pablo
fuente
0

Bajé por una madriguera de conejo mirando los árboles de intervalos (y las implementaciones de R como IRanges / plyranges) pero creo que este problema no necesita una estructura de datos tan complicada ya que los tiempos de inicio se pueden ordenar fácilmente. También amplié el conjunto de pruebas como @ismirsehregal para cubrir más relaciones de intervalo potenciales , como un intervalo que comienza antes y termina después de su vecino, o cuando se superponen tres intervalos, pero el primero y el último no se superponen, o dos intervalos que comienzan y detenerse exactamente al mismo tiempo.

library(lubridate)
times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)

Luego hago dos pases a través de cada intervalo para ver si se superpone con su predecesor o sucesor

stop >= lead(start, default=FALSE) y start <= lag(stop, default=FALSE))

Durante cada pasada, hay una segunda verificación para ver si la prioridad del intervalo tiene un valor numérico más alto que el predecesor o sucesor priority > lead(priority, default=(max(priority) + 1)). Durante cada pasada, si ambas condiciones son verdaderas, un indicador de "eliminar" se establece en verdadero en una nueva columna usando mutate. Cualquier fila con un indicador de eliminación se filtra.

library(tidyverse)
times_df %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                            (priority > lead(priority, default=(max(priority) + 1))), 
                            TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                            (priority > lag(priority, default=(max(priority) + 1))), 
                            TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)

Esto evita verificar todas las combinaciones potenciales de intervalos, como la respuesta de @ Paul (2n versus n! Comparaciones), además de satisfacer mi ignorancia de la teoría de gráficos :)

Del mismo modo, la respuesta de @ ismirsehregal tiene una magia data.table que está más allá de mi comprensión.

La solución de @ MKa no parece funcionar con> 2 períodos superpuestos

Probar las soluciones da

#>          expr       min        lq      mean    median        uq       max
#> 1 dplyr_igraph 36.568842 41.510950 46.692147 43.362724 47.065277 241.92073
#> 2  data.table  9.126385  9.935049 11.395977 10.521032 11.446257  34.26953
#> 3       dplyr  5.031397  5.500363  6.224059  5.902589  6.373197  15.09273
#>   neval
#> 1   100
#> 2   100
#> 3   100

De este código

library(igraph)
library(data.table)
library(microbenchmark)
benchmarks <- microbenchmark(dplyr_igraph = {
  group_interval <- function(start, end, buffer = 0) {

  dat <- tibble(rid = 1:length(start),
                start = start,
                end = end,
                intervals = case_when(!is.na(start) & !is.na(end) ~ interval(start, end),
                                      is.na(start) ~ interval(end, end),
                                      is.na(end) ~ interval(start, start),
                                      TRUE ~ interval(NA, NA)))

  int_start(dat$intervals) <- int_start(dat$intervals) - buffer + seconds(0.01)
  int_end(dat$intervals) <- int_end(dat$intervals) + buffer - seconds(0.01)

  df_overlap <- bind_cols(
    expand.grid(dat$rid, dat$rid), # make a 2 col table with every combination of id numbers
    expand.grid(dat$intervals, dat$intervals)) %>% # make a combination of every interval
    mutate(overlap = int_overlaps(.data$Var11, .data$Var21)) %>% # determine if intervals overlap
    rename("row" = "Var1", "col" = "Var2")

  dat_graph <- graph_from_data_frame(filter(df_overlap, overlap) %>% select(row, col))
  groups <- components(dat_graph)$membership[df_overlap$row]

  df_groups <- tibble(row = as.integer(names(groups)), group = groups) %>%
    unique()

  left_join(select(dat, rid), df_groups, by = c("rid" = "row"))$group
  }

  times_tib <- as_tibble(times_df)

  mutate(times_tib, group = group_interval(start, stop)) %>%
    group_by(group) %>%
    top_n(1, desc(priority)) %>%
    ungroup() %>%
    select(-group)
}, data.table = {
  times_dt <- as.data.table(times_df)
  setkey(times_dt, start, stop)[, index := .I]
  overlaps_dt <- foverlaps(times_dt, times_dt, type = "any", which = TRUE)[xid != yid][, group := fifelse(xid > yid, yes = paste0(yid, "_", xid), no = paste0(xid, "_", yid))]
  overlaps_merged <- merge(times_dt, overlaps_dt, by.x = "index", by.y = "xid")[, .(delete_index = index[priority == max(priority)]), by = "group"]
  result_dt <- times_dt[!unique(overlaps_merged$delete_index)][, index := NULL]
}, dplyr = {
times_df %>%
    arrange(start) %>%
    mutate(remove1 = ifelse((stop >= lead(start, default=FALSE)) & 
                            (priority > lead(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    mutate(remove2 = ifelse((start <= lag(stop, default=FALSE)) & 
                            (priority > lag(priority, default=(max(priority) + 1))), TRUE, FALSE)) %>%
    filter(remove1 == FALSE & remove2 == FALSE) %>%
    select(1:3)
})
summary(benchmarks)
pgcudahy
fuente
Gracias por los comentarios: no estaba familiarizado con la tibbleestructura y parece que pull()estaba causando el problema. Para dataframe(), debería funcionar como es. Acabo de actualizar la respuesta.
MKa
Enfoque agradable, tomé su lógica, la modifiqué un poco y la traduje para data.tableque las cosas sean aún más rápidas (consulte mi nuevo punto de referencia).
ismirsehregal
0

También puede usar igraphpara identificar grupos superpuestos, puede intentar:

library(tidyverse)
library(lubridate)
times_df <- data.frame(
  start = as_datetime(
    c(
      "2019-10-05 14:05:25",
      "2019-10-05 17:30:20",
      "2019-10-05 17:37:00",
      "2019-10-06 04:43:55",
      "2019-10-06 04:53:45",
      "2019-10-06 04:53:46",
      "2019-10-07 06:00:00",
      "2019-10-07 06:10:00",
      "2019-10-07 06:20:00",
      "2019-10-08 06:00:00",
      "2019-10-08 06:10:00",
      "2019-10-08 06:20:00",
      "2019-10-09 03:00:00",
      "2019-10-09 03:10:00",
      "2019-10-10 03:00:00",
      "2019-10-10 03:10:00",
      "2019-10-11 05:00:00",
      "2019-10-11 05:00:00")
  ),
  stop = as_datetime(
    c(
      "2019-10-05 14:19:20",
      "2019-10-05 17:45:15",
      "2019-10-05 17:50:45",
      "2019-10-06 04:59:00",
      "2019-10-06 05:07:10",
      "2019-10-06 05:07:11",
      "2019-10-07 06:18:00",
      "2019-10-07 06:28:00",
      "2019-10-07 06:38:00",
      "2019-10-08 06:18:00",
      "2019-10-08 06:28:00",
      "2019-10-08 06:38:00",
      "2019-10-09 03:30:00",
      "2019-10-09 03:20:00",
      "2019-10-10 03:30:00",
      "2019-10-10 03:20:00",
      "2019-10-11 05:40:00",
      "2019-10-11 05:40:00")
  ),
  priority = c(5, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 1, 2, 2, 1, 3, 4)
)
times_df$id <- 1:nrow(times_df)


# Create consolidated df which we will use to check if stop date is in between start and stop
my_df <- bind_rows(replicate(n = nrow(times_df), expr = times_df, simplify = FALSE))
my_df$stop_chk <- rep(times_df$stop, each = nrow(times_df))

# Flag if stop date sits in between start and stop
my_df$chk <- my_df$stop_chk >= my_df$start & my_df$stop_chk <= my_df$stop
my_df$chk_id <- times_df[match(my_df$stop_chk, times_df$stop), "id"]

# Using igrpah to cluster ids to create unique groups
# this will identify any overlapping groups
library(igraph)
g <- graph.data.frame(my_df[my_df$chk == TRUE, c("id", "chk_id")])
df_g <- data.frame(clusters(g)$membership)
df_g$chk_id <- row.names(df_g)

# copy the unique groups to the df
my_df$new_id <- df_g[match(my_df$chk_id, df_g$chk_id), "clusters.g..membership"]
my_df %>% 
  filter(chk == TRUE) %>%
  arrange(priority) %>%
  filter(!duplicated(new_id)) %>%
  select(start, stop, priority) %>%
  arrange(start)
MKa
fuente