Cómo agregar textura para rellenar colores en ggplot2

103

Actualmente estoy usando scale_brewer()para relleno y estos se ven hermosos en color (en la pantalla y a través de la impresora a color) pero se imprimen de manera relativamente uniforme como grises cuando se usa una impresora en blanco y negro. Busqué en la ggplot2documentación en línea pero no vi nada sobre cómo agregar texturas para rellenar colores. ¿Existe una ggplot2forma oficial de hacer esto o alguien tiene un truco que usa? Por texturas me refiero a cosas como barras diagonales, barras diagonales inversas, patrones de puntos, etc. que diferencian los colores de relleno cuando se imprimen en blanco y negro.

rhh
fuente

Respuestas:

35

ggplot puede usar paletas de colorbrewer. Algunos de estos son compatibles con las "fotocopias". Entonces, ¿tal vez algo como esto funcione para ti?

ggplot(diamonds, aes(x=cut, y=price, group=cut))+
geom_boxplot(aes(fill=cut))+scale_fill_brewer(palette="OrRd")

en este caso, OrRd es una paleta que se encuentra en la página web de colorbrewer: http://colorbrewer2.org/

Compatible con fotocopias: indica que una combinación de colores determinada resistirá el fotocopiado en blanco y negro. Los esquemas divergentes no se pueden fotocopiar con éxito. Las diferencias de luminosidad deben conservarse con esquemas secuenciales.

Andreas
fuente
22
No responde a la pregunta del PO. Vine aquí porque estoy apegado a ciertos colores. Esta 'respuesta' aceptada no sugiere cómo aplicar texturas.
MS Berends
3
@MSBerends no responde a su pregunta . ¡Estoy bastante seguro de que la marca de verificación verde es una señal de que ha respondido a la pregunta!
Yan Foto
10
No se deje engañar por una marca de verificación. La pregunta era cómo aplicar texturas, y eso no tiene respuesta. Se proporcionó una idea original, sí, pero no una respuesta a la pregunta.
MS Berends
83

Hola amigos, aquí hay un pequeño truco que aborda el problema de la textura de una manera muy básica:

ggplot2: haz que el borde de una barra sea más oscuro que las otras usando R

EDITAR: Finalmente encontré tiempo para dar un breve ejemplo de este truco que permite al menos 3 tipos de patrones básicos en ggplot2. El código:

Example.Data<- data.frame(matrix(vector(), 0, 3, dimnames=list(c(), c("Value", "Variable", "Fill"))), stringsAsFactors=F)

Example.Data[1, ] <- c(45, 'Horizontal Pattern','Horizontal Pattern' )
Example.Data[2, ] <- c(65, 'Vertical Pattern','Vertical Pattern' )
Example.Data[3, ] <- c(89, 'Mesh Pattern','Mesh Pattern' )


HighlightDataVert<-Example.Data[2, ]
HighlightHorizontal<-Example.Data[1, ]
HighlightMesh<-Example.Data[3, ]
HighlightHorizontal$Value<-as.numeric(HighlightHorizontal$Value)
Example.Data$Value<-as.numeric(Example.Data$Value)

HighlightDataVert$Value<-as.numeric(HighlightDataVert$Value)
HighlightMesh$Value<-as.numeric(HighlightMesh$Value)
HighlightHorizontal$Value<-HighlightHorizontal$Value-5
HighlightHorizontal2<-HighlightHorizontal
HighlightHorizontal2$Value<-HighlightHorizontal$Value-5
HighlightHorizontal3<-HighlightHorizontal2
HighlightHorizontal3$Value<-HighlightHorizontal2$Value-5
HighlightHorizontal4<-HighlightHorizontal3
HighlightHorizontal4$Value<-HighlightHorizontal3$Value-5
HighlightHorizontal5<-HighlightHorizontal4
HighlightHorizontal5$Value<-HighlightHorizontal4$Value-5
HighlightHorizontal6<-HighlightHorizontal5
HighlightHorizontal6$Value<-HighlightHorizontal5$Value-5
HighlightHorizontal7<-HighlightHorizontal6
HighlightHorizontal7$Value<-HighlightHorizontal6$Value-5
HighlightHorizontal8<-HighlightHorizontal7
HighlightHorizontal8$Value<-HighlightHorizontal7$Value-5

HighlightMeshHoriz<-HighlightMesh
HighlightMeshHoriz$Value<-HighlightMeshHoriz$Value-5
HighlightMeshHoriz2<-HighlightMeshHoriz
HighlightMeshHoriz2$Value<-HighlightMeshHoriz2$Value-5
HighlightMeshHoriz3<-HighlightMeshHoriz2
HighlightMeshHoriz3$Value<-HighlightMeshHoriz3$Value-5
HighlightMeshHoriz4<-HighlightMeshHoriz3
HighlightMeshHoriz4$Value<-HighlightMeshHoriz4$Value-5
HighlightMeshHoriz5<-HighlightMeshHoriz4
HighlightMeshHoriz5$Value<-HighlightMeshHoriz5$Value-5
HighlightMeshHoriz6<-HighlightMeshHoriz5
HighlightMeshHoriz6$Value<-HighlightMeshHoriz6$Value-5
HighlightMeshHoriz7<-HighlightMeshHoriz6
HighlightMeshHoriz7$Value<-HighlightMeshHoriz7$Value-5
HighlightMeshHoriz8<-HighlightMeshHoriz7
HighlightMeshHoriz8$Value<-HighlightMeshHoriz8$Value-5
HighlightMeshHoriz9<-HighlightMeshHoriz8
HighlightMeshHoriz9$Value<-HighlightMeshHoriz9$Value-5
HighlightMeshHoriz10<-HighlightMeshHoriz9
HighlightMeshHoriz10$Value<-HighlightMeshHoriz10$Value-5
HighlightMeshHoriz11<-HighlightMeshHoriz10
HighlightMeshHoriz11$Value<-HighlightMeshHoriz11$Value-5
HighlightMeshHoriz12<-HighlightMeshHoriz11
HighlightMeshHoriz12$Value<-HighlightMeshHoriz12$Value-5
HighlightMeshHoriz13<-HighlightMeshHoriz12
HighlightMeshHoriz13$Value<-HighlightMeshHoriz13$Value-5
HighlightMeshHoriz14<-HighlightMeshHoriz13
HighlightMeshHoriz14$Value<-HighlightMeshHoriz14$Value-5
HighlightMeshHoriz15<-HighlightMeshHoriz14
HighlightMeshHoriz15$Value<-HighlightMeshHoriz15$Value-5
HighlightMeshHoriz16<-HighlightMeshHoriz15
HighlightMeshHoriz16$Value<-HighlightMeshHoriz16$Value-5
HighlightMeshHoriz17<-HighlightMeshHoriz16
HighlightMeshHoriz17$Value<-HighlightMeshHoriz17$Value-5

ggplot(Example.Data, aes(x=Variable, y=Value, fill=Fill)) + theme_bw() + #facet_wrap(~Product, nrow=1)+ #Ensure theme_bw are there to create borders
  theme(legend.position = "none")+
  scale_fill_grey(start=.4)+
  #scale_y_continuous(limits = c(0, 100), breaks = (seq(0,100,by = 10)))+
  geom_bar(position=position_dodge(.9), stat="identity", colour="black", legend = FALSE)+
  geom_bar(data=HighlightDataVert, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.80)+
geom_bar(data=HighlightDataVert, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.60)+  
  geom_bar(data=HighlightDataVert, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.40)+
  geom_bar(data=HighlightDataVert, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.20)+
  geom_bar(data=HighlightDataVert, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.0) +
  geom_bar(data=HighlightHorizontal, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal2, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal3, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal4, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal5, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal6, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal7, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightHorizontal8, position=position_dodge(.9), stat="identity", colour="black", size=.5)+
  geom_bar(data=HighlightMesh, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.80)+
 geom_bar(data=HighlightMesh, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.60)+
  geom_bar(data=HighlightMesh, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.40)+
  geom_bar(data=HighlightMesh, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.20)+
  geom_bar(data=HighlightMesh, position=position_dodge(.9), stat="identity", colour="black", size=.5, width=0.0)+
  geom_bar(data=HighlightMeshHoriz, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
geom_bar(data=HighlightMeshHoriz2, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz3, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz4, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz5, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz6, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz7, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz8, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz9, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz10, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz11, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz12, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz13, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz14, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz15, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz16, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")+
  geom_bar(data=HighlightMeshHoriz17, position=position_dodge(.9), stat="identity", colour="black", size=.5, fill = "transparent")

Produce esto:

ingrese la descripción de la imagen aquí

No es muy bonito, pero es la única solución en la que puedo pensar.

Como puede verse, produzco algunos datos muy básicos. Para obtener las líneas verticales, simplemente creo un marco de datos para contener la variable a la que quería agregar líneas verticales y redibujé los bordes del gráfico varias veces, reduciendo el ancho cada vez.

Se hace algo similar para las líneas horizontales, pero se necesita un nuevo marco de datos para cada redibujo en el que he restado un valor (en mi ejemplo '5') del valor asociado con la variable de interés. Bajando efectivamente la altura de la barra. Esto es complicado de lograr y puede haber enfoques más simplificados, pero esto ilustra cómo se puede lograr.

El patrón de malla es una combinación de ambos. Primero dibuje las líneas verticales y luego agregue la configuración de líneas horizontales fillcomofill='transparent' para asegurar las líneas verticales no están dibujados sobre.

Hasta que haya una actualización del patrón, espero que algunos de ustedes lo encuentren útil.

EDITAR 2:

Además, también se pueden agregar patrones diagonales. Agregué una variable adicional al marco de datos:

Example.Data[4,] <- c(20, 'Diagonal Pattern','Diagonal Pattern' )

Luego creé un nuevo marco de datos para contener las coordenadas de las líneas diagonales:

Diag <- data.frame(
  x = c(1,1,1.45,1.45), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y = c(0,0,20,20),
  x2 = c(1.2,1.2,1.45,1.45), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y2 = c(0,0,11.5,11.5),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  x3 = c(1.38,1.38,1.45,1.45), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y3 = c(0,0,3.5,3.5),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  x4 = c(.8,.8,1.26,1.26), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y4 = c(0,0,20,20),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  x5 = c(.6,.6,1.07,1.07), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y5 = c(0,0,20,20),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  x6 = c(.555,.555,.88,.88), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y6 = c(6,6,20,20),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  x7 = c(.555,.555,.72,.72), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y7 = c(13,13,20,20),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  x8 = c(.8,.8,1.26,1.26), # 1st 2 values dictate starting point of line. 2nd 2 dictate width. Each whole = one background grid
  y8 = c(0,0,20,20),# inner 2 values dictate height of horizontal line. Outer: vertical edge lines.
  #Variable = "Diagonal Pattern",
  Fill = "Diagonal Pattern"
  )

A partir de ahí, agregué geom_paths al ggplot de arriba con cada uno llamando a diferentes coordenadas y dibujando las líneas sobre la barra deseada:

+geom_path(data=Diag, aes(x=x, y=y),colour = "black")+  # calls co-or for sig. line & draws
  geom_path(data=Diag, aes(x=x2, y=y2),colour = "black")+  # calls co-or for sig. line & draws
  geom_path(data=Diag, aes(x=x3, y=y3),colour = "black")+
  geom_path(data=Diag, aes(x=x4, y=y4),colour = "black")+
  geom_path(data=Diag, aes(x=x5, y=y5),colour = "black")+
  geom_path(data=Diag, aes(x=x6, y=y6),colour = "black")+
  geom_path(data=Diag, aes(x=x7, y=y7),colour = "black")

Esto da como resultado lo siguiente:

ingrese la descripción de la imagen aquí

Es un poco descuidado, ya que no invertí demasiado tiempo en conseguir que las líneas estuvieran perfectamente en ángulo y espaciadas, pero esto debería servir como prueba de concepto.

Obviamente, las líneas pueden inclinarse en la dirección opuesta y también hay espacio para mallas diagonales como las mallas horizontales y verticales.

Creo que eso es todo lo que puedo ofrecer en el frente del patrón. Espero que alguien pueda encontrarle un uso.

EDITAR 3: Últimas palabras famosas. Se me ocurrió otra opción de patrón. Esta vez usandogeom_jitter .

Nuevamente agregué otra Variable al marco de datos:

Example.Data[5,] <- c(100, 'Bubble Pattern','Bubble Pattern' )

Y ordené cómo quería que se presentara cada patrón:

Example.Data$Variable = Relevel(Example.Data$Variable, ref = c("Diagonal Pattern", "Bubble Pattern","Horizontal Pattern","Mesh Pattern","Vertical Pattern"))

A continuación, creé una columna para contener el número asociado con la barra de destino prevista en el eje x:

Example.Data$Bubbles <- 2

Seguido de columnas para contener las posiciones en el eje y de las 'burbujas':

Example.Data$Points <- c(5, 10, 15, 20, 25)
Example.Data$Points2 <- c(30, 35, 40, 45, 50)
Example.Data$Points3 <- c(55, 60, 65, 70, 75)
Example.Data$Points4 <- c(80, 85, 90, 95, 7)
Example.Data$Points5 <- c(14, 21, 28, 35, 42)
Example.Data$Points6 <- c(49, 56, 63, 71, 78)
Example.Data$Points7 <- c(84, 91, 98, 6, 12)

Finalmente agregué geom_jitters al ggplot anterior usando las nuevas columnas para posicionar y reutilizar 'Puntos' para variar el tamaño de las 'burbujas':

+geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points3, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points4, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points3, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points4, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points5, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points5, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points6, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points6, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points7, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points7, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points3, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points4, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points3, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points4, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points2, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points5, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points5, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points6, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points6, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points7, size=Points), alpha=.5)+
  geom_jitter(data=Example.Data,aes(x=Bubbles, y=Points7, size=Points), alpha=.5)

Cada vez que se ejecuta el gráfico, el jitter posiciona las 'burbujas' de manera diferente, pero aquí está uno de los resultados más agradables que tuve:

ingrese la descripción de la imagen aquí

A veces, las 'burbujas' se agitarán fuera de las fronteras. Si esto sucede, vuelva a ejecutar o simplemente exporte en dimensiones más grandes. Se pueden trazar más burbujas en cada incremento en el eje y, lo que llenará más espacio en blanco si así lo desea.

Eso hace hasta 7 patrones (si incluye líneas diagonales inclinadas opuestas y malla diagonal de ambas) que se pueden piratear en ggplot.

No dude en sugerir más si alguien puede pensar en alguno.

EDITAR 4: He estado trabajando en una función de envoltura para automatizar el rayado / patrones en ggplot2. Publicaré un enlace una vez que haya expandido la función para permitir patrones en gráficos facet_grid, etc. Aquí hay un resultado con la entrada de la función para un gráfico simple de barras como ejemplo:

ingrese la descripción de la imagen aquí

Agregaré una última edición una vez que tenga la función lista para compartir.

EDITAR 5: Aquí hay un enlace a la función EggHatch que escribí para facilitar un poco el proceso de agregar patrones a los gráficos geom_bar.

Docconcoct
fuente
¡Buen trabajo! Sin embargo, parece que esta solución solo funciona para diagramas de barras o?
SkyWalker
@Giovanni Azua Solo lo he probado para gráficos de barras, sí. Cuando encuentre tiempo, intentaré adaptar la función vinculada para parcelas apiladas, etc.
Docconcoct
70

Actualmente no es posible porque la cuadrícula (el sistema de gráficos que usa ggplot2 para hacer el dibujo real) no admite texturas. ¡Lo siento!

Hadley
fuente
70
¿Algún plan para agregar gridextra como dependencia para obtener esta funcionalidad?
russellpierce
¿Alguna noticia sobre esto?
Hrant
Esto podría cambiar en un futuro no muy lejano. Ver esta discusión , basándose en los próximos cambios en el paquete de R rejilla .
stragu
21

Puede usar el paquete ggtextures de @claus wilke para dibujar rectángulos y barras con textura ggplot2.

# Image/pattern randomly selected from README
path_image <- "http://www.hypergridbusiness.com/wp-content/uploads/2012/12/rocks2-256.jpg"

library(ggplot2)
# devtools::install_github("clauswilke/ggtextures")
ggplot(mtcars, aes(cyl, mpg)) + 
  ggtextures::geom_textured_bar(stat = "identity", image = path_image)

ingrese la descripción de la imagen aquí

También puedes combinarlo con otras geoms:

data_raw <- data.frame(x = round(rbinom(1000, 50, 0.1)))
ggplot(data_raw, aes(x)) +
  geom_textured_bar(
    aes(y = ..prop..), image = path_image
  ) +
  geom_density()

ingrese la descripción de la imagen aquí

PoGibas
fuente
2
Gracias por mover tu respuesta @PoGibas. ¡Apuesto a que recibirá mucha más atención (bien merecida) aquí! Saludos
Henrik
Muy buena solucion.
Docconcoct
4
Vea los patrones descargables aquí: heropatterns.com
Nova
Ahora solo necesito averiguar cómo alterar su transparencia en R .. jaja
Nova
2

Creo que el trabajo de Docconcoct es genial, pero ahora de repente busqué en Google un paquete especial: Patternplot . No vi el código interno, pero la viñeta parece útil.

UlvHare
fuente
2

Acabo de descubrir un paquete llamado ggpattern( https://github.com/coolbutuseless/ggpattern ) que parece ser una buena solución para este problema y se integra muy bien con el flujo de trabajo de ggplot2. Si bien las soluciones que usan texturas pueden funcionar bien para barras diagonales, no producirán gráficos vectoriales y, por lo tanto, no son óptimas.

Aquí hay un ejemplo tomado directamente del repositorio de github de ggpattern:

install.packages("remotes")
remotes::install_github("coolbutuseless/ggpattern")

library(ggplot2)
library(ggpattern)

df <- data.frame(level = c("a", "b", "c", 'd'), outcome = c(2.3, 1.9, 3.2, 1))

ggplot(df) +
  geom_col_pattern(
    aes(level, outcome, pattern_fill = level), 
    pattern = 'stripe',
    fill    = 'white',
    colour  = 'black'
  ) +
  theme_bw(18) +
  theme(legend.position = 'none') + 
  labs(
    title    = "ggpattern::geom_pattern_col()",
    subtitle = "pattern = 'stripe'"
  ) +
  coord_fixed(ratio = 1/2)

lo que da como resultado este gráfico:

gráfico de ejemplo de ggpattern

Si solo algunas barras deben tener rayas, geom_col_pattern()tiene un pattern_alphaargumento que podría usarse para hacer que ciertas rayas no deseadas sean completamente transparentes.

fujiu
fuente
1

Puede ser útil crear un marco de datos ficticio cuyos contornos correspondan a "texturas" y luego usar geom_contour. Aquí está mi ejemplo:

library(ggplot2)

eg = expand.grid(R1 = seq(0,1,by=0.01), R2 = seq(0,1,by=0.01))
     eg$importance = (eg$R1+eg$R2)/2

  ggplot(eg , aes(x = R1, y = R2)) +
  geom_raster(aes(fill = importance), interpolate=TRUE) +
  scale_fill_gradient2(low="white", high="gray20", limits=c(0,1)) +
  theme_classic()+
  geom_contour(bins=5,aes(z=importance), color="black", size=0.6)+
  coord_fixed(ratio = 1, xlim=c(0,1),ylim=c(0,1))

Y aquí está el resultado: gráfico sombreado con líneas

(las líneas deben suavizarse)

Ondrej Vencalek
fuente