Tengo datos de una encuesta en línea donde los encuestados realizan un ciclo de preguntas de 1 a 3 veces. El software de la encuesta (Qualtrics) registra estos datos en varias columnas, es decir, Q3.2 en la encuesta tendrá columnas Q3.2.1.
, Q3.2.2.
y Q3.2.3.
:
df <- data.frame(
id = 1:10,
time = as.Date('2009-01-01') + 0:9,
Q3.2.1. = rnorm(10, 0, 1),
Q3.2.2. = rnorm(10, 0, 1),
Q3.2.3. = rnorm(10, 0, 1),
Q3.3.1. = rnorm(10, 0, 1),
Q3.3.2. = rnorm(10, 0, 1),
Q3.3.3. = rnorm(10, 0, 1)
)
# Sample data
id time Q3.2.1. Q3.2.2. Q3.2.3. Q3.3.1. Q3.3.2. Q3.3.3.
1 1 2009-01-01 -0.2059165 -0.29177677 -0.7107192 1.52718069 -0.4484351 -1.21550600
2 2 2009-01-02 -0.1981136 -1.19813815 1.1750200 -0.40380049 -1.8376094 1.03588482
3 3 2009-01-03 0.3514795 -0.27425539 1.1171712 -1.02641801 -2.0646661 -0.35353058
...
Quiero combinar todas las columnas QN.N * en columnas QN.N individuales ordenadas, y finalmente terminaré con algo como esto:
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
11 1 2009-01-01 2 -0.29177677 -0.4484351
12 2 2009-01-02 2 -1.19813815 -1.8376094
13 3 2009-01-03 2 -0.27425539 -2.0646661
...
21 1 2009-01-01 3 -0.71071921 -1.21550600
22 2 2009-01-02 3 1.17501999 1.03588482
23 3 2009-01-03 3 1.11717121 -0.35353058
...
La tidyr
biblioteca tiene la gather()
función, que funciona muy bien para combinar un conjunto de columnas:
library(dplyr)
library(tidyr)
library(stringr)
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2)) %>%
select(id, time, loop_number, Q3.2)
id time loop_number Q3.2
1 1 2009-01-01 1 -0.20591649
2 2 2009-01-02 1 -0.19811357
3 3 2009-01-03 1 0.35147949
...
29 9 2009-01-09 3 -0.58581232
30 10 2009-01-10 3 -2.33393981
El marco de datos resultante tiene 30 filas, como se esperaba (10 individuos, 3 bucles cada uno). Sin embargo, la recopilación de un segundo conjunto de columnas no funciona correctamente: crea correctamente las dos columnas combinadas Q3.2
y Q3.3
, pero termina con 90 filas en lugar de 30 (todas las combinaciones de 10 personas, 3 bucles de Q3.2 y 3 bucles de Q3 .3; las combinaciones aumentarán sustancialmente para cada grupo de columnas en los datos reales):
df %>% gather(loop_number, Q3.2, starts_with("Q3.2")) %>%
gather(loop_number, Q3.3, starts_with("Q3.3")) %>%
mutate(loop_number = str_sub(loop_number,-2,-2))
id time loop_number Q3.2 Q3.3
1 1 2009-01-01 1 -0.20591649 1.52718069
2 2 2009-01-02 1 -0.19811357 -0.40380049
3 3 2009-01-03 1 0.35147949 -1.02641801
...
89 9 2009-01-09 3 -0.58581232 -0.13187024
90 10 2009-01-10 3 -2.33393981 -0.48502131
¿Hay alguna manera de usar múltiples llamadas para gather()
así, combinando pequeños subconjuntos de columnas como esta mientras se mantiene el número correcto de filas?
df %>% gather(loop_number, Q3.2, starts_with("Q3."))
seperate()
para dividir los valores de Q3.3 (y más allá) en sus propias columnas. Pero eso todavía parece una solución hacky realmente indirecta…spread
Estoy trabajando en una solución ahora: pdf %>% gather(question_number, Q3.2, starts_with("Q3.")) %>% mutate(loop_number = str_sub(question_number,-2,-2), question_number = str_sub(question_number,1,4)) %>% select(id, time, loop_number, question_number, Q3.2) %>% spread(key = question_number, value = Q3.2)
spread()
. Aunque las llamadas múltiples parecen inevitables de todos modos, ya sea que se trate de un montón de correosgenerate()
electrónicos que funcionan o de correosspread()
electrónicos anidados …