Detección de señal pico en datos de series temporales en tiempo real

243

Actualización: el algoritmo con mejor rendimiento hasta ahora es este .


Esta pregunta explora algoritmos robustos para detectar picos repentinos en datos de series temporales en tiempo real.

Considere el siguiente conjunto de datos:

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9 1, ...
     1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1 3, ... 
     2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

(Formato Matlab pero no se trata del lenguaje sino del algoritmo)

Trama de datos

Puede ver claramente que hay tres picos grandes y algunos picos pequeños. Este conjunto de datos es un ejemplo específico de la clase de conjuntos de datos de series de tiempo sobre los que trata la pregunta. Esta clase de conjuntos de datos tiene dos características generales:

  1. Hay ruido básico con una media general.
  2. Hay grandes ' picos ' o ' puntos de datos más altos ' que se desvían significativamente del ruido.

Supongamos también lo siguiente:

  • el ancho de los picos no se puede determinar de antemano
  • la altura de los picos se desvía clara y significativamente de los otros valores
  • el algoritmo utilizado debe calcular en tiempo real (por lo tanto, cambie con cada nuevo punto de datos)

Para tal situación, se debe construir un valor límite que dispare señales. Sin embargo, el valor límite no puede ser estático y debe determinarse en tiempo real en función de un algoritmo.


Mi pregunta: ¿cuál es un buen algoritmo para calcular dichos umbrales en tiempo real? ¿Existen algoritmos específicos para tales situaciones? ¿Cuáles son los algoritmos más conocidos?


Algoritmos robustos o ideas útiles son muy apreciados. (puede responder en cualquier idioma: se trata del algoritmo)

Juan Pablo
fuente
55
No debe haber algún requisito absoluto altura por ser un pico, además de los requisitos ya se ha dado. De lo contrario, el pico en el momento 13 debería considerarse un pico. (Equivalente: si en el futuro, los picos subieron a 1000 aproximadamente, entonces los dos picos en 25 y 35 no deberían considerarse picos.)
j_random_hacker
Estoy de acuerdo. Supongamos que estos picos son los que solo debemos considerar.
Jean-Paul
Puede que te estés haciendo la pregunta equivocada. En lugar de preguntar cómo puede detectar sin demora, puede preguntar si es posible detectar un cierto tipo de señal sin demora dado solo lo que se sabe antes de ese momento, o lo que se necesita saber sobre una señal para detectar algo con algo dado retrasar.
hotpaw2
2
Solía ​​hacer esto para detectar un cambio brusco de la intensidad de la luz en un fotosensor. Lo hice moviendo el promedio e ignorando cualquier punto de datos que sea mayor que un umbral. Tenga en cuenta que este umbral es diferente del umbral que determina un pico. Entonces, supongamos que incluye solo puntos de datos que están dentro de un stddev a su promedio móvil, y considere esos puntos de datos con más de tres stddev como picos. Este algoritmo funcionó muy bien para nuestro contexto de aplicación en ese momento.
justhalf
1
Ah, ya veo. No lo esperaba en forma de código. Si hubiera visto esta pregunta anteriormente, probablemente obtendría esa respuesta mucho más rápido = D. De todos modos, mi aplicación en ese momento fue detectar si el fotosensor está obstruido por la fuente de luz ambiental (es por eso que necesitamos el promedio móvil, ya que la fuente de luz ambiental puede cambiar gradualmente con el tiempo). Creamos esto como un juego donde debes pasar tu mano sobre los sensores siguiendo un patrón específico. = D
justo el

Respuestas:

334

Robusto algoritmo de detección de picos (usando puntajes z)

Se me ocurrió un algoritmo que funciona muy bien para este tipo de conjuntos de datos. Se basa en el principio de dispersión : si un nuevo punto de datos es un número x dado de desviaciones estándar de una media móvil, el algoritmo señala (también llamado puntaje z ). El algoritmo es muy robusto porque construye una media móvil y una desviación separadas , de modo que las señales no corrompen el umbral. Por lo tanto, las señales futuras se identifican con aproximadamente la misma precisión, independientemente de la cantidad de señales anteriores. El algoritmo toma 3 entradas: lag = the lag of the moving window, threshold = the z-score at which the algorithm signalsy influence = the influence (between 0 and 1) of new signals on the mean and standard deviation. Por ejemplo, un lagde 5 usará las últimas 5 observaciones para suavizar los datos. UNAthresholdde 3.5 indicará si un punto de datos está a 3.5 desviaciones estándar de la media móvil. Y una influencede 0.5 da señales de la mitad de la influencia que tienen los puntos de datos normales. Del mismo modo, un influence0 ignora las señales por completo para volver a calcular el nuevo umbral. Por lo tanto, una influencia de 0 es la opción más robusta (pero supone la estacionariedad ); poner la opción de influencia en 1 es menos robusto. Para datos no estacionarios, la opción de influencia debe colocarse en algún lugar entre 0 y 1.

Funciona de la siguiente manera:

Pseudocódigo

# Let y be a vector of timeseries data of at least length lag+2
# Let mean() be a function that calculates the mean
# Let std() be a function that calculates the standard deviaton
# Let absolute() be the absolute value function

# Settings (the ones below are examples: choose what is best for your data)
set lag to 5;          # lag 5 for the smoothing functions
set threshold to 3.5;  # 3.5 standard deviations for signal
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half

# Initialize variables
set signals to vector 0,...,0 of length of y;   # Initialize signal results
set filteredY to y(1),...,y(lag)                # Initialize filtered series
set avgFilter to null;                          # Initialize average filter
set stdFilter to null;                          # Initialize std. filter
set avgFilter(lag) to mean(y(1),...,y(lag));    # Initialize first value
set stdFilter(lag) to std(y(1),...,y(lag));     # Initialize first value

for i=lag+1,...,t do
  if absolute(y(i) - avgFilter(i-1)) > threshold*stdFilter(i-1) then
    if y(i) > avgFilter(i-1) then
      set signals(i) to +1;                     # Positive signal
    else
      set signals(i) to -1;                     # Negative signal
    end
    # Reduce influence of signal
    set filteredY(i) to influence*y(i) + (1-influence)*filteredY(i-1);
  else
    set signals(i) to 0;                        # No signal
    set filteredY(i) to y(i);
  end
  # Adjust the filters
  set avgFilter(i) to mean(filteredY(i-lag),...,filteredY(i));
  set stdFilter(i) to std(filteredY(i-lag),...,filteredY(i));
end

Las reglas generales para seleccionar buenos parámetros para sus datos se pueden encontrar a continuación.


Manifestación

Demostración de algoritmo de umbral robusto

El código de Matlab para esta demostración se puede encontrar aquí . Para usar la demostración, simplemente ejecútela y cree una serie temporal usted mismo haciendo clic en el gráfico superior. El algoritmo comienza a funcionar después de dibujar el lagnúmero de observaciones.


Resultado

Para la pregunta original, este algoritmo dará el siguiente resultado al usar la siguiente configuración lag = 30, threshold = 5, influence = 0:

Ejemplo de algoritmo de umbral


Implementaciones en diferentes lenguajes de programación:


Reglas prácticas para configurar el algoritmo

lag: el parámetro de retraso determina cuánto se suavizarán sus datos y qué tan adaptativo es el algoritmo a los cambios en el promedio a largo plazo de los datos. Cuanto más estacionarios sean sus datos, más retrasos debe incluir (esto debería mejorar la solidez del algoritmo). Si sus datos contienen tendencias que varían con el tiempo, debe considerar qué tan rápido desea que el algoritmo se adapte a estas tendencias. Es decir, si se pone laga 10, se necesitan 10 'períodos' antes de que el umbral del algoritmo se ajuste a cualquier cambio sistemático en el promedio a largo plazo. Por lo tanto, elija el lagparámetro en función del comportamiento de tendencia de sus datos y cuán adaptativo desea que sea el algoritmo.

influence: este parámetro determina la influencia de las señales en el umbral de detección del algoritmo. Si se pone a 0, las señales no tienen influencia en el umbral, de modo que las señales futuras se detectan en función de un umbral que se calcula con una media y una desviación estándar que no está influenciada por las señales pasadas. Otra forma de pensar sobre esto es que si pone la influencia en 0, asume implícitamente la estacionariedad (es decir, no importa cuántas señales haya, la serie temporal siempre vuelve al mismo promedio a largo plazo). Si este no es el caso, debe colocar el parámetro de influencia en algún lugar entre 0 y 1, dependiendo del grado en que las señales puedan influir sistemáticamente en la tendencia de los datos que varía con el tiempo. Por ejemplo, si las señales conducen a una ruptura estructural del promedio a largo plazo de las series de tiempo, el parámetro de influencia debe ponerse alto (cerca de 1) para que el umbral pueda ajustarse a estos cambios rápidamente.

threshold: el parámetro umbral es el número de desviaciones estándar de la media móvil por encima de la cual el algoritmo clasificará un nuevo punto de datos como una señal. Por ejemplo, si un nuevo punto de datos tiene desviaciones estándar de 4.0 por encima de la media móvil y el parámetro de umbral se establece como 3.5, el algoritmo identificará el punto de datos como una señal. Este parámetro debe establecerse en función de cuántas señales espera. Por ejemplo, si sus datos se distribuyen normalmente, un umbral (o: puntaje z) de 3.5 corresponde a una probabilidad de señalización de 0.00047 (de esta tabla), lo que implica que espera una señal cada 2128 puntos de datos (1 / 0.00047). Por lo tanto, el umbral influye directamente en la sensibilidad del algoritmo y, por lo tanto, también con qué frecuencia el algoritmo señala. Examine sus propios datos y determine un umbral sensible que haga que el algoritmo señale cuando lo desee (es posible que se necesite algún tipo de prueba y error aquí para llegar a un buen umbral para su propósito).


ADVERTENCIA: El código anterior siempre recorre todos los puntos de datos cada vez que se ejecuta. Al implementar este código, asegúrese de dividir el cálculo de la señal en una función separada (sin el bucle). Luego, cuando llegue un nuevo punto de datos, actualice filteredY, avgFiltery stdFilteruna vez. No vuelva a calcular las señales para todos los datos cada vez que haya un nuevo punto de datos (como en el ejemplo anterior), ¡eso sería extremadamente ineficiente y lento!

Otras formas de modificar el algoritmo (para posibles mejoras) son:

  1. Use la mediana en lugar de la media
  2. Use una medida robusta de escala , como el MAD, en lugar de la desviación estándar
  3. Use un margen de señalización para que la señal no cambie con demasiada frecuencia
  4. Cambiar la forma en que funciona el parámetro de influencia
  5. Tratar las señales hacia arriba y hacia abajo de manera diferente (tratamiento asimétrico)
  6. Cree un influenceparámetro separado para la media y el estándar ( como se hizo en esta traducción rápida )

(Conocidas) citas académicas a esta respuesta de StackOverflow:

Otro trabajo usando el algoritmo

Otras aplicaciones de este algoritmo

Enlaces a otros algoritmos de detección de picos


Si usa esta función en alguna parte, por favor, acreditenme o respondan. Si tiene alguna pregunta sobre este algoritmo, publíquela en los comentarios a continuación o comuníquese conmigo en LinkedIn .


Juan Pablo
fuente
El enlace a movingstd está roto, pero puede encontrar una descripción aquí
Phylliida
@reasra Resulta que la función no necesita una desviación estándar móvil después de reescribir. Ahora se puede usar con funciones simples integradas de Matlab :)
Jean-Paul
1
Estoy probando el código de Matlab para algunos datos del acelerómetro, pero por alguna razón el thresholdgráfico se convierte en una línea verde plana después de un gran pico de hasta 20 en los datos, y se mantiene así para el resto del gráfico ... Si Elimino el sike, esto no sucede, por lo que parece ser causado por el pico en los datos. ¿Alguna idea de lo que podría estar pasando? Soy un novato en Matlab, así que no puedo entenderlo ...
Magnus W
@BadCash ¿Puede proporcionar un ejemplo (con los datos)? ¿Quizás haga su propia pregunta aquí en SO y dígame el enlace?
Jean-Paul
2
Hay muchas maneras de mejorar este algo, así que sea creativo (tratamiento diferente arriba / abajo; mediana en lugar de media; robusta estándar; escribir el código como una función eficiente en la memoria; margen umbral para que la señal no cambie con demasiada frecuencia, etc. .).
Jean-Paul
41

Aquí es el Python/ numpyla ejecución del algoritmo de puntuación z suavizado (ver respuesta anterior ). Puedes encontrar la esencia aquí .

#!/usr/bin/env python
# Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
import numpy as np
import pylab

def thresholding_algo(y, lag, threshold, influence):
    signals = np.zeros(len(y))
    filteredY = np.array(y)
    avgFilter = [0]*len(y)
    stdFilter = [0]*len(y)
    avgFilter[lag - 1] = np.mean(y[0:lag])
    stdFilter[lag - 1] = np.std(y[0:lag])
    for i in range(lag, len(y)):
        if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter [i-1]:
            if y[i] > avgFilter[i-1]:
                signals[i] = 1
            else:
                signals[i] = -1

            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])
        else:
            signals[i] = 0
            filteredY[i] = y[i]
            avgFilter[i] = np.mean(filteredY[(i-lag+1):i+1])
            stdFilter[i] = np.std(filteredY[(i-lag+1):i+1])

    return dict(signals = np.asarray(signals),
                avgFilter = np.asarray(avgFilter),
                stdFilter = np.asarray(stdFilter))

A continuación se muestra la prueba en el mismo conjunto de datos que produce el mismo gráfico que en la respuesta original para R/Matlab

# Data
y = np.array([1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1])

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

# Run algo with settings from above
result = thresholding_algo(y, lag=lag, threshold=threshold, influence=influence)

# Plot result
pylab.subplot(211)
pylab.plot(np.arange(1, len(y)+1), y)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"], color="cyan", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] + threshold * result["stdFilter"], color="green", lw=2)

pylab.plot(np.arange(1, len(y)+1),
           result["avgFilter"] - threshold * result["stdFilter"], color="green", lw=2)

pylab.subplot(212)
pylab.step(np.arange(1, len(y)+1), result["signals"], color="red", lw=2)
pylab.ylim(-1.5, 1.5)
pylab.show()
R Kiselev
fuente
Por aquí 'y' es en realidad la señal y 'señales' es el conjunto de puntos de datos, ¿estoy en lo cierto al entender?
TheTank
1
@TheTank yes la matriz de datos que pasa, signalses la matriz de salida +1o -1que indica para cada punto de datos y[i]si ese punto de datos es un "pico significativo" dada la configuración que utiliza.
Jean-Paul el
23

Un enfoque es detectar picos basados ​​en la siguiente observación:

  • El tiempo t es un pico si (y (t)> y (t-1)) && (y (t)> y (t + 1))

Evita falsos positivos al esperar hasta que termine la tendencia alcista. No es exactamente "en tiempo real" en el sentido de que perderá el pico en un dt. La sensibilidad se puede controlar al requerir un margen de comparación. Existe una compensación entre la detección ruidosa y el tiempo de demora de la detección. Puede enriquecer el modelo agregando más parámetros:

  • pico si (y (t) - y (t-dt)> m) && (y (t) - y (t + dt)> m)

donde dt y m son parámetros a la sensibilidad del control vs tiempo de retardo

Esto es lo que obtienes con el algoritmo mencionado: ingrese la descripción de la imagen aquí

Aquí está el código para reproducir la trama en Python:

import numpy as np
import matplotlib.pyplot as plt
input = np.array([ 1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1.1,  1. ,  0.8,  0.9,
    1. ,  1.2,  0.9,  1. ,  1. ,  1.1,  1.2,  1. ,  1.5,  1. ,  3. ,
    2. ,  5. ,  3. ,  2. ,  1. ,  1. ,  1. ,  0.9,  1. ,  1. ,  3. ,
    2.6,  4. ,  3. ,  3.2,  2. ,  1. ,  1. ,  1. ,  1. ,  1. ])
signal = (input > np.roll(input,1)) & (input > np.roll(input,-1))
plt.plot(input)
plt.plot(signal.nonzero()[0], input[signal], 'ro')
plt.show()

Al configurar m = 0.5, puede obtener una señal más limpia con solo un falso positivo: ingrese la descripción de la imagen aquí

aha
fuente
Anterior = mejor, por lo que todos los picos son significativos. ¡Gracias! ¡Muy genial!
Jean-Paul
¿Cómo haría para cambiar la sensibilidad?
Jean-Paul
Puedo pensar en dos enfoques: 1: establezca m en un valor mayor para que solo se detecten picos más grandes. 2: en lugar de calcular y (t) - y (t-dt) (e y (t) - y (t + dt)), integra de t-dt a t (y de t a t + dt).
aha
2
¿Con qué criterios estás rechazando los otros 7 picos?
hotpaw2
44
Hay un problema con los picos planos, ya que lo que se hace es básicamente la detección de bordes 1-D (como convolucionar la señal con [1 0 -1])
ben
18

En el procesamiento de señales, la detección de picos a menudo se realiza mediante la transformación wavelet. Básicamente, realiza una transformación wavelet discreta en los datos de su serie temporal. Los cruces por cero en los coeficientes de detalle que se devuelven corresponderán a los picos en la señal de la serie de tiempo. Obtiene diferentes amplitudes de pico detectadas en diferentes niveles de coeficiente de detalle, lo que le brinda una resolución de niveles múltiples.

cklin
fuente
1
Su respuesta me permitió ver este artículo y esta respuesta que me ayudarán a construir un buen algoritmo para mi implementación. ¡Gracias!
Jean-Paul
@cklin ¿Puede explicar cómo calcula los cruces por cero de los coeficientes wavelet, ya que no están en la misma escala de tiempo que la serie de tiempo original. ¿Alguna referencia sobre este uso?
horaceT
11

Intentamos usar el algoritmo de puntuación z suavizado en nuestro conjunto de datos, lo que resulta en hipersensibilidad o infrasensibilidad (dependiendo de cómo se sintonicen los parámetros), con poco punto medio. En la señal de tráfico de nuestro sitio, hemos observado una línea de base de baja frecuencia que representa el ciclo diario e incluso con los mejores parámetros posibles (que se muestran a continuación), aún se desvaneció especialmente en el cuarto día porque la mayoría de los puntos de datos se reconocen como anomalías .

Partiendo del algoritmo original de puntuación z, encontramos una manera de resolver este problema mediante el filtrado inverso. Los detalles del algoritmo modificado y su aplicación en la atribución de tráfico comercial de televisión se publican en el blog de nuestro equipo .

ingrese la descripción de la imagen aquí

jbm
fuente
Es genial ver que el algoritmo fue un punto de partida para tu versión más avanzada. Sus datos tienen un patrón muy particular, por lo que tendría más sentido eliminar primero el patrón utilizando alguna otra técnica y luego aplicar el algoritmo a los residuos. Alternativamente, es posible que desee utilizar una ventana centrada en lugar de una ventana retrasada para calcular el promedio / st.dev. Otro comentario: su solución se mueve de derecha a izquierda para identificar picos, pero esto no es posible en aplicaciones en tiempo real (es por eso que el algo original es tan simplista, porque la información futura es inaccesible).
Jean-Paul
10

En la topología computacional, la idea de homología persistente conduce a una solución eficiente, rápida como la clasificación de números. No solo detecta picos, sino que cuantifica la "importancia" de los picos de una manera natural que le permite seleccionar los picos que son significativos para usted.

Resumen de algoritmo. En un entorno unidimensional (serie temporal, señal de valor real), el algoritmo se puede describir fácilmente mediante la siguiente figura:

Picos más persistentes

Piense en el gráfico de funciones (o su conjunto de subniveles) como un paisaje y considere un nivel de agua decreciente que comienza en el nivel infinito (o 1.8 en esta imagen). Mientras el nivel disminuye, en las islas máximas locales aparecen. En los mínimos locales, estas islas se fusionan. Un detalle en esta idea es que la isla que apareció más tarde se fusionó con la isla que es más antigua. La "persistencia" de una isla es su tiempo de nacimiento menos su tiempo de muerte. Las longitudes de las barras azules representan la persistencia, que es el "significado" mencionado anteriormente de un pico.

Eficiencia. No es demasiado difícil encontrar una implementación que se ejecute en tiempo lineal, de hecho es un ciclo simple y simple, después de que se ordenaron los valores de la función. Por lo tanto, esta implementación debe ser rápida en la práctica y también se implementa fácilmente.

Referencias Aquí se puede encontrar una reseña de toda la historia y referencias a la motivación de la homología persistente (un campo en topología algebraica computacional): https://www.sthu.org/blog/13-perstopology-peakdetection/index.html

S. Huber
fuente
Este algoritmo es mucho más rápido y preciso que, por ejemplo, scipy.signal.find_peaks. Para una serie temporal "real" con 1053896 puntos de datos, detectó 137516 picos (13%). El orden de los picos (el más significativo primero) permite extraer los picos más significativos. Proporciona el inicio, el pico y el final de cada pico. Funciona bien con datos ruidosos.
vinh
Por datos en tiempo real se entiende un denominado algoritmo en línea, donde los puntos de datos se reciben una y otra vez. La importancia de un pico podría estar determinada por valores en el futuro. Sería bueno extender el algoritmo para estar en línea modificando los resultados pasados ​​sin sacrificar demasiado la complejidad del tiempo.
S. Huber
9

Encontré otro algoritmo por GH Palshikar en Algoritmos simples para la detección de picos en series temporales .

El algoritmo es así:

algorithm peak1 // one peak detection algorithms that uses peak function S1 

input T = x1, x2, …, xN, N // input time-series of N points 
input k // window size around the peak 
input h // typically 1 <= h <= 3 
output O // set of peaks detected in T 

begin 
O = empty set // initially empty 

    for (i = 1; i < n; i++) do
        // compute peak function value for each of the N points in T 
        a[i] = S1(k,i,xi,T); 
    end for 

    Compute the mean m' and standard deviation s' of all positive values in array a; 

    for (i = 1; i < n; i++) do // remove local peaks which are “small” in global context 
        if (a[i] > 0 && (a[i] – m') >( h * s')) then O = O + {xi}; 
        end if 
    end for 

    Order peaks in O in terms of increasing index in T 

    // retain only one peak out of any set of peaks within distance k of each other 

    for every adjacent pair of peaks xi and xj in O do 
        if |j – i| <= k then remove the smaller value of {xi, xj} from O 
        end if 
    end for 
end

Ventajas

  • El documento proporciona 5 algoritmos diferentes para la detección de picos
  • Los algoritmos funcionan en los datos de series temporales sin procesar (no se necesita suavizado)

Desventajas

  • Difícil de determinar ky de hantemano
  • Los picos no pueden ser planos (como el tercer pico en mis datos de prueba)

Ejemplo:

ingrese la descripción de la imagen aquí

Juan Pablo
fuente
Papel realmente interesante. S4 parece una mejor función para usar en su opinión. Pero lo más importante es aclarar cuando k <i <Nk no es cierto. ¿Cómo definiría la función S1 (S2, ..) para i = 0? Simplemente no dividí entre 2 e ignoré el primer operando y para cada uno incluí ambos operandos, pero para i <= k había menos operandos a la izquierda luego a la derecha
daniels_pa
8

Aquí hay una implementación del algoritmo Smoothed z-score (arriba) en Golang. Asume una porción de []int16(muestras PCM de 16 bits). Puedes encontrar una idea general aquí .

/*
Settings (the ones below are examples: choose what is best for your data)
set lag to 5;          # lag 5 for the smoothing functions
set threshold to 3.5;  # 3.5 standard deviations for signal
set influence to 0.5;  # between 0 and 1, where 1 is normal influence, 0.5 is half
*/

// ZScore on 16bit WAV samples
func ZScore(samples []int16, lag int, threshold float64, influence float64) (signals []int16) {
    //lag := 20
    //threshold := 3.5
    //influence := 0.5

    signals = make([]int16, len(samples))
    filteredY := make([]int16, len(samples))
    for i, sample := range samples[0:lag] {
        filteredY[i] = sample
    }
    avgFilter := make([]int16, len(samples))
    stdFilter := make([]int16, len(samples))

    avgFilter[lag] = Average(samples[0:lag])
    stdFilter[lag] = Std(samples[0:lag])

    for i := lag + 1; i < len(samples); i++ {

        f := float64(samples[i])

        if float64(Abs(samples[i]-avgFilter[i-1])) > threshold*float64(stdFilter[i-1]) {
            if samples[i] > avgFilter[i-1] {
                signals[i] = 1
            } else {
                signals[i] = -1
            }
            filteredY[i] = int16(influence*f + (1-influence)*float64(filteredY[i-1]))
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        } else {
            signals[i] = 0
            filteredY[i] = samples[i]
            avgFilter[i] = Average(filteredY[(i - lag):i])
            stdFilter[i] = Std(filteredY[(i - lag):i])
        }
    }

    return
}

// Average a chunk of values
func Average(chunk []int16) (avg int16) {
    var sum int64
    for _, sample := range chunk {
        if sample < 0 {
            sample *= -1
        }
        sum += int64(sample)
    }
    return int16(sum / int64(len(chunk)))
}
Xeoncross
fuente
@ Jean-Paul No estoy totalmente seguro de que todo sea correcto, por lo que puede haber errores.
Xeoncross
1
¿Has intentado replicar el ejemplo de salida de Matlab / R? Eso debería ser una buena confirmación de la calidad.
Jean-Paul
7

Aquí hay una implementación en C ++ del algoritmo de puntuación z suavizado de esta respuesta

std::vector<int> smoothedZScore(std::vector<float> input)
{   
    //lag 5 for the smoothing functions
    int lag = 5;
    //3.5 standard deviations for signal
    float threshold = 3.5;
    //between 0 and 1, where 1 is normal influence, 0.5 is half
    float influence = .5;

    if (input.size() <= lag + 2)
    {
        std::vector<int> emptyVec;
        return emptyVec;
    }

    //Initialise variables
    std::vector<int> signals(input.size(), 0.0);
    std::vector<float> filteredY(input.size(), 0.0);
    std::vector<float> avgFilter(input.size(), 0.0);
    std::vector<float> stdFilter(input.size(), 0.0);
    std::vector<float> subVecStart(input.begin(), input.begin() + lag);
    avgFilter[lag] = mean(subVecStart);
    stdFilter[lag] = stdDev(subVecStart);

    for (size_t i = lag + 1; i < input.size(); i++)
    {
        if (std::abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
        {
            if (input[i] > avgFilter[i - 1])
            {
                signals[i] = 1; //# Positive signal
            }
            else
            {
                signals[i] = -1; //# Negative signal
            }
            //Make influence lower
            filteredY[i] = influence* input[i] + (1 - influence) * filteredY[i - 1];
        }
        else
        {
            signals[i] = 0; //# No signal
            filteredY[i] = input[i];
        }
        //Adjust the filters
        std::vector<float> subVec(filteredY.begin() + i - lag, filteredY.begin() + i);
        avgFilter[i] = mean(subVec);
        stdFilter[i] = stdDev(subVec);
    }
    return signals;
}
puntilla
fuente
2
Advertencia: esta implementación en realidad no proporciona un método para calcular la media y la desviación estándar. Para C ++ 11, puede encontrar un método fácil aquí: stackoverflow.com/a/12405793/3250829
rayryeng
6

Este problema es similar al que encontré en un curso de sistemas híbridos / integrados, pero que estaba relacionado con la detección de fallas cuando la entrada de un sensor es ruidosa. Usamos un filtro de Kalman para estimar / predecir el estado oculto del sistema, luego utilizamos análisis estadísticos para determinar la probabilidad de que ocurriera una falla . Estábamos trabajando con sistemas lineales, pero existen variantes no lineales. Recuerdo que el enfoque era sorprendentemente adaptable, pero requería un modelo de la dinámica del sistema.

Peter G
fuente
El filtro de Kalman es interesante, pero parece que no puedo encontrar un algoritmo aplicable para mi propósito. Sin embargo, aprecio mucho la respuesta y examinaré algunos documentos de detección de picos como este para ver si puedo aprender de alguno de los algoritmos. ¡Gracias!
Jean-Paul
6

Implementación de C ++

#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_map>
#include <cmath>
#include <iterator>
#include <numeric>

using namespace std;

typedef long double ld;
typedef unsigned int uint;
typedef std::vector<ld>::iterator vec_iter_ld;

/**
 * Overriding the ostream operator for pretty printing vectors.
 */
template<typename T>
std::ostream &operator<<(std::ostream &os, std::vector<T> vec) {
    os << "[";
    if (vec.size() != 0) {
        std::copy(vec.begin(), vec.end() - 1, std::ostream_iterator<T>(os, " "));
        os << vec.back();
    }
    os << "]";
    return os;
}

/**
 * This class calculates mean and standard deviation of a subvector.
 * This is basically stats computation of a subvector of a window size qual to "lag".
 */
class VectorStats {
public:
    /**
     * Constructor for VectorStats class.
     *
     * @param start - This is the iterator position of the start of the window,
     * @param end   - This is the iterator position of the end of the window,
     */
    VectorStats(vec_iter_ld start, vec_iter_ld end) {
        this->start = start;
        this->end = end;
        this->compute();
    }

    /**
     * This method calculates the mean and standard deviation using STL function.
     * This is the Two-Pass implementation of the Mean & Variance calculation.
     */
    void compute() {
        ld sum = std::accumulate(start, end, 0.0);
        uint slice_size = std::distance(start, end);
        ld mean = sum / slice_size;
        std::vector<ld> diff(slice_size);
        std::transform(start, end, diff.begin(), [mean](ld x) { return x - mean; });
        ld sq_sum = std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.0);
        ld std_dev = std::sqrt(sq_sum / slice_size);

        this->m1 = mean;
        this->m2 = std_dev;
    }

    ld mean() {
        return m1;
    }

    ld standard_deviation() {
        return m2;
    }

private:
    vec_iter_ld start;
    vec_iter_ld end;
    ld m1;
    ld m2;
};

/**
 * This is the implementation of the Smoothed Z-Score Algorithm.
 * This is direction translation of https://stackoverflow.com/a/22640362/1461896.
 *
 * @param input - input signal
 * @param lag - the lag of the moving window
 * @param threshold - the z-score at which the algorithm signals
 * @param influence - the influence (between 0 and 1) of new signals on the mean and standard deviation
 * @return a hashmap containing the filtered signal and corresponding mean and standard deviation.
 */
unordered_map<string, vector<ld>> z_score_thresholding(vector<ld> input, int lag, ld threshold, ld influence) {
    unordered_map<string, vector<ld>> output;

    uint n = (uint) input.size();
    vector<ld> signals(input.size());
    vector<ld> filtered_input(input.begin(), input.end());
    vector<ld> filtered_mean(input.size());
    vector<ld> filtered_stddev(input.size());

    VectorStats lag_subvector_stats(input.begin(), input.begin() + lag);
    filtered_mean[lag - 1] = lag_subvector_stats.mean();
    filtered_stddev[lag - 1] = lag_subvector_stats.standard_deviation();

    for (int i = lag; i < n; i++) {
        if (abs(input[i] - filtered_mean[i - 1]) > threshold * filtered_stddev[i - 1]) {
            signals[i] = (input[i] > filtered_mean[i - 1]) ? 1.0 : -1.0;
            filtered_input[i] = influence * input[i] + (1 - influence) * filtered_input[i - 1];
        } else {
            signals[i] = 0.0;
            filtered_input[i] = input[i];
        }
        VectorStats lag_subvector_stats(filtered_input.begin() + (i - lag), filtered_input.begin() + i);
        filtered_mean[i] = lag_subvector_stats.mean();
        filtered_stddev[i] = lag_subvector_stats.standard_deviation();
    }

    output["signals"] = signals;
    output["filtered_mean"] = filtered_mean;
    output["filtered_stddev"] = filtered_stddev;

    return output;
};

int main() {
    vector<ld> input = {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0,
                        1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9, 1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0,
                        1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0, 3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0,
                        1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0, 1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0};

    int lag = 30;
    ld threshold = 5.0;
    ld influence = 0.0;
    unordered_map<string, vector<ld>> output = z_score_thresholding(input, lag, threshold, influence);
    cout << output["signals"] << endl;
}
Animesh Pandey
fuente
6

Siguiendo con la solución propuesta de @ Jean-Paul, he implementado su algoritmo en C #

public class ZScoreOutput
{
    public List<double> input;
    public List<int> signals;
    public List<double> avgFilter;
    public List<double> filtered_stddev;
}

public static class ZScore
{
    public static ZScoreOutput StartAlgo(List<double> input, int lag, double threshold, double influence)
    {
        // init variables!
        int[] signals = new int[input.Count];
        double[] filteredY = new List<double>(input).ToArray();
        double[] avgFilter = new double[input.Count];
        double[] stdFilter = new double[input.Count];

        var initialWindow = new List<double>(filteredY).Skip(0).Take(lag).ToList();

        avgFilter[lag - 1] = Mean(initialWindow);
        stdFilter[lag - 1] = StdDev(initialWindow);

        for (int i = lag; i < input.Count; i++)
        {
            if (Math.Abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
            {
                signals[i] = (input[i] > avgFilter[i - 1]) ? 1 : -1;
                filteredY[i] = influence * input[i] + (1 - influence) * filteredY[i - 1];
            }
            else
            {
                signals[i] = 0;
                filteredY[i] = input[i];
            }

            // Update rolling average and deviation
            var slidingWindow = new List<double>(filteredY).Skip(i - lag).Take(lag+1).ToList();

            var tmpMean = Mean(slidingWindow);
            var tmpStdDev = StdDev(slidingWindow);

            avgFilter[i] = Mean(slidingWindow);
            stdFilter[i] = StdDev(slidingWindow);
        }

        // Copy to convenience class 
        var result = new ZScoreOutput();
        result.input = input;
        result.avgFilter       = new List<double>(avgFilter);
        result.signals         = new List<int>(signals);
        result.filtered_stddev = new List<double>(stdFilter);

        return result;
    }

    private static double Mean(List<double> list)
    {
        // Simple helper function! 
        return list.Average();
    }

    private static double StdDev(List<double> values)
    {
        double ret = 0;
        if (values.Count() > 0)
        {
            double avg = values.Average();
            double sum = values.Sum(d => Math.Pow(d - avg, 2));
            ret = Math.Sqrt((sum) / (values.Count() - 1));
        }
        return ret;
    }
}

Ejemplo de uso:

var input = new List<double> {1.0, 1.0, 1.1, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 0.9, 1.0,
    1.1, 1.0, 1.0, 0.9, 1.0, 1.0, 1.1, 1.0, 1.0, 1.0, 1.0, 1.1, 0.9, 1.0, 1.1, 1.0, 1.0, 0.9,
    1.0, 1.1, 1.0, 1.0, 1.1, 1.0, 0.8, 0.9, 1.0, 1.2, 0.9, 1.0, 1.0, 1.1, 1.2, 1.0, 1.5, 1.0,
    3.0, 2.0, 5.0, 3.0, 2.0, 1.0, 1.0, 1.0, 0.9, 1.0, 1.0, 3.0, 2.6, 4.0, 3.0, 3.2, 2.0, 1.0,
    1.0, 0.8, 4.0, 4.0, 2.0, 2.5, 1.0, 1.0, 1.0};

int lag = 30;
double threshold = 5.0;
double influence = 0.0;

var output = ZScore.StartAlgo(input, lag, threshold, influence);
Lanzamiento aéreo del océano
fuente
1
Hola @ Jean-Paul. Salud. Sí, he probado el resultado con su versión R para asegurarme de que coincida. Gracias nuevamente por su solución a este problema.
Ocean Airdrop
Hola, creo que hay un error en ese código, en el método StdDev tomas valores.Count () - 1, ¿debería haber -1? Creo que querrías la cantidad de elementos y eso es lo que obtienes de los valores.Count ().
Viktor
1
Hmm .. Buen lugar. Aunque originalmente porté el algoritmo a C #, nunca terminé usándolo. Probablemente reemplazaría toda esa función con una llamada a la biblioteca nuget MathNet. "Install-Package MathNet.Numerics" Tiene funciones preconstruidas para PopulationStandardDeviation () y StandardDeviation (); p.ej. var PopulationStdDev = nueva Lista <double> (1,2,3,4) .PopulationStandardDeviation (); var sampleStdDev = nueva Lista <double> (1,2,3,4) .StandardDeviation ();
Ocean Airdrop
6

Aquí hay una implementación en C de la puntuación Z suavizada de @ Jean-Paul para el microcontrolador Arduino que se usa para tomar lecturas del acelerómetro y decidir si la dirección del impacto proviene de la izquierda o la derecha. Esto funciona muy bien ya que este dispositivo devuelve una señal de rebote. Aquí está esta entrada a este algoritmo de detección de picos desde el dispositivo, que muestra un impacto desde la derecha seguido de un impacto desde la izquierda. Puede ver el pico inicial y luego la oscilación del sensor.

ingrese la descripción de la imagen aquí

#include <stdio.h>
#include <math.h>
#include <string.h>


#define SAMPLE_LENGTH 1000

float stddev(float data[], int len);
float mean(float data[], int len);
void thresholding(float y[], int signals[], int lag, float threshold, float influence);


void thresholding(float y[], int signals[], int lag, float threshold, float influence) {
    memset(signals, 0, sizeof(float) * SAMPLE_LENGTH);
    float filteredY[SAMPLE_LENGTH];
    memcpy(filteredY, y, sizeof(float) * SAMPLE_LENGTH);
    float avgFilter[SAMPLE_LENGTH];
    float stdFilter[SAMPLE_LENGTH];

    avgFilter[lag - 1] = mean(y, lag);
    stdFilter[lag - 1] = stddev(y, lag);

    for (int i = lag; i < SAMPLE_LENGTH; i++) {
        if (fabsf(y[i] - avgFilter[i-1]) > threshold * stdFilter[i-1]) {
            if (y[i] > avgFilter[i-1]) {
                signals[i] = 1;
            } else {
                signals[i] = -1;
            }
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1];
        } else {
            signals[i] = 0;
        }
        avgFilter[i] = mean(filteredY + i-lag, lag);
        stdFilter[i] = stddev(filteredY + i-lag, lag);
    }
}

float mean(float data[], int len) {
    float sum = 0.0, mean = 0.0;

    int i;
    for(i=0; i<len; ++i) {
        sum += data[i];
    }

    mean = sum/len;
    return mean;


}

float stddev(float data[], int len) {
    float the_mean = mean(data, len);
    float standardDeviation = 0.0;

    int i;
    for(i=0; i<len; ++i) {
        standardDeviation += pow(data[i] - the_mean, 2);
    }

    return sqrt(standardDeviation/len);
}

int main() {
    printf("Hello, World!\n");
    int lag = 100;
    float threshold = 5;
    float influence = 0;
    float y[]=  {1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
  ....
1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1}

    int signal[SAMPLE_LENGTH];

    thresholding(y, signal,  lag, threshold, influence);

    return 0;
}

El suyo es el resultado con influencia = 0

ingrese la descripción de la imagen aquí

No es genial pero aquí con influencia = 1

ingrese la descripción de la imagen aquí

lo cual es muy bueno

DavidC
fuente
5

Aquí hay una implementación real de Java basada en la respuesta Groovy publicada anteriormente. (Sé que ya se han publicado implementaciones de Groovy y Kotlin, pero para alguien como yo que solo ha hecho Java, es una verdadera molestia descubrir cómo convertir entre otros idiomas y Java).

(Los resultados coinciden con los gráficos de otras personas)

Implementación de algoritmo

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

import org.apache.commons.math3.stat.descriptive.SummaryStatistics;

public class SignalDetector {

    public HashMap<String, List> analyzeDataForSignals(List<Double> data, int lag, Double threshold, Double influence) {

        // init stats instance
        SummaryStatistics stats = new SummaryStatistics();

        // the results (peaks, 1 or -1) of our algorithm
        List<Integer> signals = new ArrayList<Integer>(Collections.nCopies(data.size(), 0));

        // filter out the signals (peaks) from our original list (using influence arg)
        List<Double> filteredData = new ArrayList<Double>(data);

        // the current average of the rolling window
        List<Double> avgFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // the current standard deviation of the rolling window
        List<Double> stdFilter = new ArrayList<Double>(Collections.nCopies(data.size(), 0.0d));

        // init avgFilter and stdFilter
        for (int i = 0; i < lag; i++) {
            stats.addValue(data.get(i));
        }
        avgFilter.set(lag - 1, stats.getMean());
        stdFilter.set(lag - 1, Math.sqrt(stats.getPopulationVariance())); // getStandardDeviation() uses sample variance
        stats.clear();

        // loop input starting at end of rolling window
        for (int i = lag; i < data.size(); i++) {

            // if the distance between the current value and average is enough standard deviations (threshold) away
            if (Math.abs((data.get(i) - avgFilter.get(i - 1))) > threshold * stdFilter.get(i - 1)) {

                // this is a signal (i.e. peak), determine if it is a positive or negative signal
                if (data.get(i) > avgFilter.get(i - 1)) {
                    signals.set(i, 1);
                } else {
                    signals.set(i, -1);
                }

                // filter this signal out using influence
                filteredData.set(i, (influence * data.get(i)) + ((1 - influence) * filteredData.get(i - 1)));
            } else {
                // ensure this signal remains a zero
                signals.set(i, 0);
                // ensure this value is not filtered
                filteredData.set(i, data.get(i));
            }

            // update rolling average and deviation
            for (int j = i - lag; j < i; j++) {
                stats.addValue(filteredData.get(j));
            }
            avgFilter.set(i, stats.getMean());
            stdFilter.set(i, Math.sqrt(stats.getPopulationVariance()));
            stats.clear();
        }

        HashMap<String, List> returnMap = new HashMap<String, List>();
        returnMap.put("signals", signals);
        returnMap.put("filteredData", filteredData);
        returnMap.put("avgFilter", avgFilter);
        returnMap.put("stdFilter", stdFilter);

        return returnMap;

    } // end
}

Método principal

import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;

public class Main {

    public static void main(String[] args) throws Exception {
        DecimalFormat df = new DecimalFormat("#0.000");

        ArrayList<Double> data = new ArrayList<Double>(Arrays.asList(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d,
                1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d, 1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d,
                1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d, 1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d,
                0.9d, 1d, 1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d));

        SignalDetector signalDetector = new SignalDetector();
        int lag = 30;
        double threshold = 5;
        double influence = 0;

        HashMap<String, List> resultsMap = signalDetector.analyzeDataForSignals(data, lag, threshold, influence);
        // print algorithm params
        System.out.println("lag: " + lag + "\t\tthreshold: " + threshold + "\t\tinfluence: " + influence);

        System.out.println("Data size: " + data.size());
        System.out.println("Signals size: " + resultsMap.get("signals").size());

        // print data
        System.out.print("Data:\t\t");
        for (double d : data) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print signals
        System.out.print("Signals:\t");
        List<Integer> signalsList = resultsMap.get("signals");
        for (int i : signalsList) {
            System.out.print(df.format(i) + "\t");
        }
        System.out.println();

        // print filtered data
        System.out.print("Filtered Data:\t");
        List<Double> filteredDataList = resultsMap.get("filteredData");
        for (double d : filteredDataList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running average
        System.out.print("Avg Filter:\t");
        List<Double> avgFilterList = resultsMap.get("avgFilter");
        for (double d : avgFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        // print running std
        System.out.print("Std filter:\t");
        List<Double> stdFilterList = resultsMap.get("stdFilter");
        for (double d : stdFilterList) {
            System.out.print(df.format(d) + "\t");
        }
        System.out.println();

        System.out.println();
        for (int i = 0; i < signalsList.size(); i++) {
            if (signalsList.get(i) != 0) {
                System.out.println("Point " + i + " gave signal " + signalsList.get(i));
            }
        }
    }
}

Resultados

lag: 30     threshold: 5.0      influence: 0.0
Data size: 74
Signals size: 74
Data:           1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.500   1.000   3.000   2.000   5.000   3.000   2.000   1.000   1.000   1.000   0.900   1.000   1.000   3.000   2.600   4.000   3.000   3.200   2.000   1.000   1.000   0.800   4.000   4.000   2.000   2.500   1.000   1.000   1.000   
Signals:        0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   0.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   1.000   1.000   1.000   1.000   0.000   0.000   0.000   
Filtered Data:  1.000   1.000   1.100   1.000   0.900   1.000   1.000   1.100   1.000   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.000   1.100   1.000   1.000   1.000   1.000   1.100   0.900   1.000   1.100   1.000   1.000   0.900   1.000   1.100   1.000   1.000   1.100   1.000   0.800   0.900   1.000   1.200   0.900   1.000   1.000   1.100   1.200   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.900   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000   0.800   0.800   0.800   0.800   0.800   1.000   1.000   1.000   
Avg Filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   1.003   1.003   1.007   1.007   1.003   1.007   1.010   1.003   1.000   0.997   1.003   1.003   1.003   1.000   1.003   1.010   1.013   1.013   1.013   1.010   1.010   1.010   1.010   1.010   1.007   1.010   1.010   1.003   1.003   1.003   1.007   1.007   1.003   1.003   1.003   1.000   1.000   1.007   1.003   0.997   0.983   0.980   0.973   0.973   0.970   
Std filter:     0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.060   0.060   0.063   0.063   0.060   0.063   0.060   0.071   0.073   0.071   0.080   0.080   0.080   0.077   0.080   0.087   0.085   0.085   0.085   0.083   0.083   0.083   0.083   0.083   0.081   0.079   0.079   0.080   0.080   0.080   0.077   0.077   0.075   0.075   0.075   0.073   0.073   0.063   0.071   0.080   0.078   0.083   0.089   0.089   0.086   

Point 45 gave signal 1
Point 47 gave signal 1
Point 48 gave signal 1
Point 49 gave signal 1
Point 50 gave signal 1
Point 51 gave signal 1
Point 58 gave signal 1
Point 59 gave signal 1
Point 60 gave signal 1
Point 61 gave signal 1
Point 62 gave signal 1
Point 63 gave signal 1
Point 67 gave signal 1
Point 68 gave signal 1
Point 69 gave signal 1
Point 70 gave signal 1

Gráficos que muestran datos y resultados de la ejecución de Java

takanuva15
fuente
5

Apéndice 1 a la respuesta original: Matlaby Rtraducciones

Código Matlab

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
% Initialise signal results
signals = zeros(length(y),1);
% Initialise filtered series
filteredY = y(1:lag+1);
% Initialise filters
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
% Loop over all datapoints y(lag+2),...,y(t)
for i=lag+2:length(y)
    % If new value is a specified number of deviations away
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            % Positive signal
            signals(i) = 1;
        else
            % Negative signal
            signals(i) = -1;
        end
        % Make influence lower
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        % No signal
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    % Adjust the filters
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
% Done, now return results
end

Ejemplo:

% Data
y = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1,...
    1 1 1.1 0.9 1 1.1 1 1 0.9 1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1,...
    1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1,...
    1 3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

% Settings
lag = 30;
threshold = 5;
influence = 0;

% Get results
[signals,avg,dev] = ThresholdingAlgo(y,lag,threshold,influence);

figure; subplot(2,1,1); hold on;
x = 1:length(y); ix = lag+1:length(y);
area(x(ix),avg(ix)+threshold*dev(ix),'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
area(x(ix),avg(ix)-threshold*dev(ix),'FaceColor',[1 1 1],'EdgeColor','none');
plot(x(ix),avg(ix),'LineWidth',1,'Color','cyan','LineWidth',1.5);
plot(x(ix),avg(ix)+threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(x(ix),avg(ix)-threshold*dev(ix),'LineWidth',1,'Color','green','LineWidth',1.5);
plot(1:length(y),y,'b');
subplot(2,1,2);
stairs(signals,'r','LineWidth',1.5); ylim([-1.5 1.5]);

Código R

ThresholdingAlgo <- function(y,lag,threshold,influence) {
  signals <- rep(0,length(y))
  filteredY <- y[0:lag]
  avgFilter <- NULL
  stdFilter <- NULL
  avgFilter[lag] <- mean(y[0:lag], na.rm=TRUE)
  stdFilter[lag] <- sd(y[0:lag], na.rm=TRUE)
  for (i in (lag+1):length(y)){
    if (abs(y[i]-avgFilter[i-1]) > threshold*stdFilter[i-1]) {
      if (y[i] > avgFilter[i-1]) {
        signals[i] <- 1;
      } else {
        signals[i] <- -1;
      }
      filteredY[i] <- influence*y[i]+(1-influence)*filteredY[i-1]
    } else {
      signals[i] <- 0
      filteredY[i] <- y[i]
    }
    avgFilter[i] <- mean(filteredY[(i-lag):i], na.rm=TRUE)
    stdFilter[i] <- sd(filteredY[(i-lag):i], na.rm=TRUE)
  }
  return(list("signals"=signals,"avgFilter"=avgFilter,"stdFilter"=stdFilter))
}

Ejemplo:

# Data
y <- c(1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1)

lag       <- 30
threshold <- 5
influence <- 0

# Run algo with lag = 30, threshold = 5, influence = 0
result <- ThresholdingAlgo(y,lag,threshold,influence)

# Plot result
par(mfrow = c(2,1),oma = c(2,2,0,0) + 0.1,mar = c(0,0,2,1) + 0.2)
plot(1:length(y),y,type="l",ylab="",xlab="") 
lines(1:length(y),result$avgFilter,type="l",col="cyan",lwd=2)
lines(1:length(y),result$avgFilter+threshold*result$stdFilter,type="l",col="green",lwd=2)
lines(1:length(y),result$avgFilter-threshold*result$stdFilter,type="l",col="green",lwd=2)
plot(result$signals,type="S",col="red",ylab="",xlab="",ylim=c(-1.5,1.5),lwd=2)

Este código (ambos idiomas) arrojará el siguiente resultado para los datos de la pregunta original:

Ejemplo de umbral del código de Matlab


Apéndice 2 a la respuesta original: Matlabcódigo de demostración

(haga clic para crear datos)

Demo de Matlab

function [] = RobustThresholdingDemo()

%% SPECIFICATIONS
lag         = 5;       % lag for the smoothing
threshold   = 3.5;     % number of st.dev. away from the mean to signal
influence   = 0.3;     % when signal: how much influence for new data? (between 0 and 1)
                       % 1 is normal influence, 0.5 is half      
%% START DEMO
DemoScreen(30,lag,threshold,influence);

end

function [signals,avgFilter,stdFilter] = ThresholdingAlgo(y,lag,threshold,influence)
signals = zeros(length(y),1);
filteredY = y(1:lag+1);
avgFilter(lag+1,1) = mean(y(1:lag+1));
stdFilter(lag+1,1) = std(y(1:lag+1));
for i=lag+2:length(y)
    if abs(y(i)-avgFilter(i-1)) > threshold*stdFilter(i-1)
        if y(i) > avgFilter(i-1)
            signals(i) = 1;
        else
            signals(i) = -1;
        end
        filteredY(i) = influence*y(i)+(1-influence)*filteredY(i-1);
    else
        signals(i) = 0;
        filteredY(i) = y(i);
    end
    avgFilter(i) = mean(filteredY(i-lag:i));
    stdFilter(i) = std(filteredY(i-lag:i));
end
end

% Demo screen function
function [] = DemoScreen(n,lag,threshold,influence)
figure('Position',[200 100,1000,500]);
subplot(2,1,1);
title(sprintf(['Draw data points (%.0f max)      [settings: lag = %.0f, '...
    'threshold = %.2f, influence = %.2f]'],n,lag,threshold,influence));
ylim([0 5]); xlim([0 50]);
H = gca; subplot(2,1,1);
set(H, 'YLimMode', 'manual'); set(H, 'XLimMode', 'manual');
set(H, 'YLim', get(H,'YLim')); set(H, 'XLim', get(H,'XLim'));
xg = []; yg = [];
for i=1:n
    try
        [xi,yi] = ginput(1);
    catch
        return;
    end
    xg = [xg xi]; yg = [yg yi];
    if i == 1
        subplot(2,1,1); hold on;
        plot(H, xg(i),yg(i),'r.'); 
        text(xg(i),yg(i),num2str(i),'FontSize',7);
    end
    if length(xg) > lag
        [signals,avg,dev] = ...
            ThresholdingAlgo(yg,lag,threshold,influence);
        area(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'FaceColor',[0.9 0.9 0.9],'EdgeColor','none');
        area(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'FaceColor',[1 1 1],'EdgeColor','none');
        plot(xg(lag+1:end),avg(lag+1:end),'LineWidth',1,'Color','cyan');
        plot(xg(lag+1:end),avg(lag+1:end)+threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        plot(xg(lag+1:end),avg(lag+1:end)-threshold*dev(lag+1:end),...
            'LineWidth',1,'Color','green');
        subplot(2,1,2); hold on; title('Signal output');
        stairs(xg(lag+1:end),signals(lag+1:end),'LineWidth',2,'Color','blue');
        ylim([-2 2]); xlim([0 50]); hold off;
    end
    subplot(2,1,1); hold on;
    for j=2:i
        plot(xg([j-1:j]),yg([j-1:j]),'r'); plot(H,xg(j),yg(j),'r.');
        text(xg(j),yg(j),num2str(j),'FontSize',7);
    end
end
end

Juan Pablo
fuente
4

Aquí está mi intento de crear una solución Ruby para el "Algo de puntuación z suavizado" a partir de la respuesta aceptada:

module ThresholdingAlgoMixin
  def mean(array)
    array.reduce(&:+) / array.size.to_f
  end

  def stddev(array)
    array_mean = mean(array)
    Math.sqrt(array.reduce(0.0) { |a, b| a.to_f + ((b.to_f - array_mean) ** 2) } / array.size.to_f)
  end

  def thresholding_algo(lag: 5, threshold: 3.5, influence: 0.5)
    return nil if size < lag * 2
    Array.new(size, 0).tap do |signals|
      filtered = Array.new(self)

      initial_slice = take(lag)
      avg_filter = Array.new(lag - 1, 0.0) + [mean(initial_slice)]
      std_filter = Array.new(lag - 1, 0.0) + [stddev(initial_slice)]
      (lag..size-1).each do |idx|
        prev = idx - 1
        if (fetch(idx) - avg_filter[prev]).abs > threshold * std_filter[prev]
          signals[idx] = fetch(idx) > avg_filter[prev] ? 1 : -1
          filtered[idx] = (influence * fetch(idx)) + ((1-influence) * filtered[prev])
        end

        filtered_slice = filtered[idx-lag..prev]
        avg_filter[idx] = mean(filtered_slice)
        std_filter[idx] = stddev(filtered_slice)
      end
    end
  end
end

Y ejemplo de uso:

test_data = [
  1, 1, 1.1, 1, 0.9, 1, 1, 1.1, 1, 0.9, 1, 1.1, 1, 1, 0.9, 1,
  1, 1.1, 1, 1, 1, 1, 1.1, 0.9, 1, 1.1, 1, 1, 0.9, 1, 1.1, 1,
  1, 1.1, 1, 0.8, 0.9, 1, 1.2, 0.9, 1, 1, 1.1, 1.2, 1, 1.5,
  1, 3, 2, 5, 3, 2, 1, 1, 1, 0.9, 1, 1, 3, 2.6, 4, 3, 3.2, 2,
  1, 1, 0.8, 4, 4, 2, 2.5, 1, 1, 1
].extend(ThresholdingAlgoMixin)

puts test_data.thresholding_algo.inspect

# Output: [
#   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
#   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0,
#   0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
#   1, 1, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0
# ]
Kimmo Lehto
fuente
Impresionante, gracias por compartir! Te agregaré a la lista. Asegúrese de que para las aplicaciones en tiempo real cree una función separada para actualizar las señales cuando llegue un nuevo punto de datos (en lugar de recorrer todos los puntos de datos cada vez).
Jean-Paul
4

Una versión iterativa en python / numpy para la respuesta https://stackoverflow.com/a/22640362/6029703 está aquí. Este código es más rápido que el promedio computacional y la desviación estándar cada retraso para datos grandes (más de 100000).

def peak_detection_smoothed_zscore_v2(x, lag, threshold, influence):
    '''
    iterative smoothed z-score algorithm
    Implementation of algorithm from https://stackoverflow.com/a/22640362/6029703
    '''
    import numpy as np
    labels = np.zeros(len(x))
    filtered_y = np.array(x)
    avg_filter = np.zeros(len(x))
    std_filter = np.zeros(len(x))
    var_filter = np.zeros(len(x))

    avg_filter[lag - 1] = np.mean(x[0:lag])
    std_filter[lag - 1] = np.std(x[0:lag])
    var_filter[lag - 1] = np.var(x[0:lag])
    for i in range(lag, len(x)):
        if abs(x[i] - avg_filter[i - 1]) > threshold * std_filter[i - 1]:
            if x[i] > avg_filter[i - 1]:
                labels[i] = 1
            else:
                labels[i] = -1
            filtered_y[i] = influence * x[i] + (1 - influence) * filtered_y[i - 1]
        else:
            labels[i] = 0
            filtered_y[i] = x[i]
        # update avg, var, std
        avg_filter[i] = avg_filter[i - 1] + 1. / lag * (filtered_y[i] - filtered_y[i - lag])
        var_filter[i] = var_filter[i - 1] + 1. / lag * ((filtered_y[i] - avg_filter[i - 1]) ** 2 - (
            filtered_y[i - lag] - avg_filter[i - 1]) ** 2 - (filtered_y[i] - filtered_y[i - lag]) ** 2 / lag)
        std_filter[i] = np.sqrt(var_filter[i])

    return dict(signals=labels,
                avgFilter=avg_filter,
                stdFilter=std_filter)
Voluntad de tranfer
fuente
4

Pensé que proporcionaría mi implementación de Julia del algoritmo para otros. La esencia se puede encontrar aquí

using Statistics
using Plots
function SmoothedZscoreAlgo(y, lag, threshold, influence)
    # Julia implimentation of http://stackoverflow.com/a/22640362/6029703
    n = length(y)
    signals = zeros(n) # init signal results
    filteredY = copy(y) # init filtered series
    avgFilter = zeros(n) # init average filter
    stdFilter = zeros(n) # init std filter
    avgFilter[lag - 1] = mean(y[1:lag]) # init first value
    stdFilter[lag - 1] = std(y[1:lag]) # init first value

    for i in range(lag, stop=n-1)
        if abs(y[i] - avgFilter[i-1]) > threshold*stdFilter[i-1]
            if y[i] > avgFilter[i-1]
                signals[i] += 1 # postive signal
            else
                signals[i] += -1 # negative signal
            end
            # Make influence lower
            filteredY[i] = influence*y[i] + (1-influence)*filteredY[i-1]
        else
            signals[i] = 0
            filteredY[i] = y[i]
        end
        avgFilter[i] = mean(filteredY[i-lag+1:i])
        stdFilter[i] = std(filteredY[i-lag+1:i])
    end
    return (signals = signals, avgFilter = avgFilter, stdFilter = stdFilter)
end


# Data
y = [1,1,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,1,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1]

# Settings: lag = 30, threshold = 5, influence = 0
lag = 30
threshold = 5
influence = 0

results = SmoothedZscoreAlgo(y, lag, threshold, influence)
upper_bound = results[:avgFilter] + threshold * results[:stdFilter]
lower_bound = results[:avgFilter] - threshold * results[:stdFilter]
x = 1:length(y)

yplot = plot(x,y,color="blue", label="Y",legend=:topleft)
yplot = plot!(x,upper_bound, color="green", label="Upper Bound",legend=:topleft)
yplot = plot!(x,results[:avgFilter], color="cyan", label="Average Filter",legend=:topleft)
yplot = plot!(x,lower_bound, color="green", label="Lower Bound",legend=:topleft)
signalplot = plot(x,results[:signals],color="red",label="Signals",legend=:topleft)
plot(yplot,signalplot,layout=(2,1),legend=:topleft)

Resultados

Matt Camp
fuente
3

Aquí hay una implementación Groovy (Java) del algoritmo de puntuación z suavizado ( ver la respuesta anterior ).

/**
 * "Smoothed zero-score alogrithm" shamelessly copied from https://stackoverflow.com/a/22640362/6029703
 *  Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
 *
 * @param y - The input vector to analyze
 * @param lag - The lag of the moving window (i.e. how big the window is)
 * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
 * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
 * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
 */

public HashMap<String, List<Object>> thresholdingAlgo(List<Double> y, Long lag, Double threshold, Double influence) {
    //init stats instance
    SummaryStatistics stats = new SummaryStatistics()

    //the results (peaks, 1 or -1) of our algorithm
    List<Integer> signals = new ArrayList<Integer>(Collections.nCopies(y.size(), 0))
    //filter out the signals (peaks) from our original list (using influence arg)
    List<Double> filteredY = new ArrayList<Double>(y)
    //the current average of the rolling window
    List<Double> avgFilter = new ArrayList<Double>(Collections.nCopies(y.size(), 0.0d))
    //the current standard deviation of the rolling window
    List<Double> stdFilter = new ArrayList<Double>(Collections.nCopies(y.size(), 0.0d))
    //init avgFilter and stdFilter
    (0..lag-1).each { stats.addValue(y[it as int]) }
    avgFilter[lag - 1 as int] = stats.getMean()
    stdFilter[lag - 1 as int] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
    stats.clear()
    //loop input starting at end of rolling window
    (lag..y.size()-1).each { i ->
        //if the distance between the current value and average is enough standard deviations (threshold) away
        if (Math.abs((y[i as int] - avgFilter[i - 1 as int]) as Double) > threshold * stdFilter[i - 1 as int]) {
            //this is a signal (i.e. peak), determine if it is a positive or negative signal
            signals[i as int] = (y[i as int] > avgFilter[i - 1 as int]) ? 1 : -1
            //filter this signal out using influence
            filteredY[i as int] = (influence * y[i as int]) + ((1-influence) * filteredY[i - 1 as int])
        } else {
            //ensure this signal remains a zero
            signals[i as int] = 0
            //ensure this value is not filtered
            filteredY[i as int] = y[i as int]
        }
        //update rolling average and deviation
        (i - lag..i-1).each { stats.addValue(filteredY[it as int] as Double) }
        avgFilter[i as int] = stats.getMean()
        stdFilter[i as int] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
        stats.clear()
    }

    return [
        signals  : signals,
        avgFilter: avgFilter,
        stdFilter: stdFilter
    ]
}

A continuación se muestra una prueba en el mismo conjunto de datos que produce los mismos resultados que la implementación anterior de Python / numpy .

    // Data
    def y = [1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
         1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
         1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
         1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d]

    // Settings
    def lag = 30
    def threshold = 5
    def influence = 0


    def thresholdingResults = thresholdingAlgo((List<Double>) y, (Long) lag, (Double) threshold, (Double) influence)

    println y.size()
    println thresholdingResults.signals.size()
    println thresholdingResults.signals

    thresholdingResults.signals.eachWithIndex { x, idx ->
        if (x) {
            println y[idx]
        }
    }
JoshuaCWebDeveloper
fuente
3

Aquí hay una versión Scala (no idiomática) del algoritmo de puntuación z suavizado :

/**
  * Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
  * Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
  *
  * @param y - The input vector to analyze
  * @param lag - The lag of the moving window (i.e. how big the window is)
  * @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
  * @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
  * @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
  */
private def smoothedZScore(y: Seq[Double], lag: Int, threshold: Double, influence: Double): Seq[Int] = {
  val stats = new SummaryStatistics()

  // the results (peaks, 1 or -1) of our algorithm
  val signals = mutable.ArrayBuffer.fill(y.length)(0)

  // filter out the signals (peaks) from our original list (using influence arg)
  val filteredY = y.to[mutable.ArrayBuffer]

  // the current average of the rolling window
  val avgFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // the current standard deviation of the rolling window
  val stdFilter = mutable.ArrayBuffer.fill(y.length)(0d)

  // init avgFilter and stdFilter
  y.take(lag).foreach(s => stats.addValue(s))

  avgFilter(lag - 1) = stats.getMean
  stdFilter(lag - 1) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)

  // loop input starting at end of rolling window
  y.zipWithIndex.slice(lag, y.length - 1).foreach {
    case (s: Double, i: Int) =>
      // if the distance between the current value and average is enough standard deviations (threshold) away
      if (Math.abs(s - avgFilter(i - 1)) > threshold * stdFilter(i - 1)) {
        // this is a signal (i.e. peak), determine if it is a positive or negative signal
        signals(i) = if (s > avgFilter(i - 1)) 1 else -1
        // filter this signal out using influence
        filteredY(i) = (influence * s) + ((1 - influence) * filteredY(i - 1))
      } else {
        // ensure this signal remains a zero
        signals(i) = 0
        // ensure this value is not filtered
        filteredY(i) = s
      }

      // update rolling average and deviation
      stats.clear()
      filteredY.slice(i - lag, i).foreach(s => stats.addValue(s))
      avgFilter(i) = stats.getMean
      stdFilter(i) = Math.sqrt(stats.getPopulationVariance) // getStandardDeviation() uses sample variance (not what we want)
  }

  println(y.length)
  println(signals.length)
  println(signals)

  signals.zipWithIndex.foreach {
    case(x: Int, idx: Int) =>
      if (x == 1) {
        println(idx + " " + y(idx))
      }
  }

  val data =
    y.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "y", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> s, "name" -> "avgFilter", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s - threshold * stdFilter(i)), "name" -> "lower", "row" -> "data") } ++
    avgFilter.zipWithIndex.map { case (s: Double, i: Int) => Map("x" -> i, "y" -> (s + threshold * stdFilter(i)), "name" -> "upper", "row" -> "data") } ++
    signals.zipWithIndex.map { case (s: Int, i: Int) => Map("x" -> i, "y" -> s, "name" -> "signal", "row" -> "signal") }

  Vegas("Smoothed Z")
    .withData(data)
    .mark(Line)
    .encodeX("x", Quant)
    .encodeY("y", Quant)
    .encodeColor(
      field="name",
      dataType=Nominal
    )
    .encodeRow("row", Ordinal)
    .show

  return signals
}

Aquí hay una prueba que devuelve los mismos resultados que las versiones de Python y Groovy:

val y = List(1d, 1d, 1.1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1d, 1.1d, 1d, 1d,
  1d, 1d, 1.1d, 0.9d, 1d, 1.1d, 1d, 1d, 0.9d, 1d, 1.1d, 1d, 1d, 1.1d, 1d, 0.8d, 0.9d, 1d, 1.2d, 0.9d, 1d,
  1d, 1.1d, 1.2d, 1d, 1.5d, 1d, 3d, 2d, 5d, 3d, 2d, 1d, 1d, 1d, 0.9d, 1d,
  1d, 3d, 2.6d, 4d, 3d, 3.2d, 2d, 1d, 1d, 0.8d, 4d, 4d, 2d, 2.5d, 1d, 1d, 1d)

val lag = 30
val threshold = 5d
val influence = 0d

smoothedZScore(y, lag, threshold, influence)

tabla de resultados de vegas

Gist aquí

Mike Roberts
fuente
1 representa picos, -1 representa valles.
Mike Roberts
3

Necesitaba algo como esto en mi proyecto de Android. Pensé que podría devolver la implementación de Kotlin .

/**
* Smoothed zero-score alogrithm shamelessly copied from https://stackoverflow.com/a/22640362/6029703
* Uses a rolling mean and a rolling deviation (separate) to identify peaks in a vector
*
* @param y - The input vector to analyze
* @param lag - The lag of the moving window (i.e. how big the window is)
* @param threshold - The z-score at which the algorithm signals (i.e. how many standard deviations away from the moving mean a peak (or signal) is)
* @param influence - The influence (between 0 and 1) of new signals on the mean and standard deviation (how much a peak (or signal) should affect other values near it)
* @return - The calculated averages (avgFilter) and deviations (stdFilter), and the signals (signals)
*/
fun smoothedZScore(y: List<Double>, lag: Int, threshold: Double, influence: Double): Triple<List<Int>, List<Double>, List<Double>> {
    val stats = SummaryStatistics()
    // the results (peaks, 1 or -1) of our algorithm
    val signals = MutableList<Int>(y.size, { 0 })
    // filter out the signals (peaks) from our original list (using influence arg)
    val filteredY = ArrayList<Double>(y)
    // the current average of the rolling window
    val avgFilter = MutableList<Double>(y.size, { 0.0 })
    // the current standard deviation of the rolling window
    val stdFilter = MutableList<Double>(y.size, { 0.0 })
    // init avgFilter and stdFilter
    y.take(lag).forEach { s -> stats.addValue(s) }
    avgFilter[lag - 1] = stats.mean
    stdFilter[lag - 1] = Math.sqrt(stats.populationVariance) // getStandardDeviation() uses sample variance (not what we want)
    stats.clear()
    //loop input starting at end of rolling window
    (lag..y.size - 1).forEach { i ->
        //if the distance between the current value and average is enough standard deviations (threshold) away
        if (Math.abs(y[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1]) {
            //this is a signal (i.e. peak), determine if it is a positive or negative signal
            signals[i] = if (y[i] > avgFilter[i - 1]) 1 else -1
            //filter this signal out using influence
            filteredY[i] = (influence * y[i]) + ((1 - influence) * filteredY[i - 1])
        } else {
            //ensure this signal remains a zero
            signals[i] = 0
            //ensure this value is not filtered
            filteredY[i] = y[i]
        }
        //update rolling average and deviation
        (i - lag..i - 1).forEach { stats.addValue(filteredY[it]) }
        avgFilter[i] = stats.getMean()
        stdFilter[i] = Math.sqrt(stats.getPopulationVariance()) //getStandardDeviation() uses sample variance (not what we want)
        stats.clear()
    }
    return Triple(signals, avgFilter, stdFilter)
}

Un proyecto de muestra con gráficos de verificación se puede encontrar en github .

ingrese la descripción de la imagen aquí

leonardkraemer
fuente
¡Increíble! Gracias por compartir. Para aplicaciones en tiempo real, asegúrese de crear una función separada que calcule la nueva señal con cada punto de datos entrante. No recorra los datos completos cada vez que llegue un nuevo punto de datos, eso sería extremadamente ineficiente :)
Jean-Paul
1
Buen punto, no pensé en eso, porque las ventanas que uso no se superponen.
leonardkraemer
3

Aquí hay una versión Fortran alterada del algoritmo z-score . Se altera específicamente para la detección de picos (resonancia) en las funciones de transferencia en el espacio de frecuencia (cada cambio tiene un pequeño comentario en el código).

La primera modificación da una advertencia al usuario si hay una resonancia cerca del límite inferior del vector de entrada, indicado por una desviación estándar superior a un cierto umbral (10% en este caso). Esto simplemente significa que la señal no es lo suficientemente plana para que la detección inicialice los filtros correctamente.

La segunda modificación es que solo el valor más alto de un pico se agrega a los picos encontrados. Esto se alcanza al comparar cada valor pico encontrado con la magnitud de sus predecesores (rezagados) y sus sucesores (rezagados).

El tercer cambio es respetar que los picos de resonancia usualmente muestran alguna forma de simetría alrededor de la frecuencia de resonancia. Por lo tanto, es natural calcular la media y el estándar de forma simétrica alrededor del punto de datos actual (en lugar de solo para los predecesores). Esto da como resultado un mejor comportamiento de detección de picos.

Las modificaciones tienen el efecto de que toda la señal debe ser conocida de antemano por la función, que es el caso habitual para la detección de resonancia (algo así como el ejemplo de Matlab de Jean-Paul donde los puntos de datos se generan sobre la marcha no funcionará).

function PeakDetect(y,lag,threshold, influence)
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer, dimension(size(y)) :: PeakDetect
    real, dimension(size(y)) :: filteredY, avgFilter, stdFilter
    integer :: lag, ii
    real :: threshold, influence

    ! Executing part
    PeakDetect = 0
    filteredY = 0.0
    filteredY(1:lag+1) = y(1:lag+1)
    avgFilter = 0.0
    avgFilter(lag+1) = mean(y(1:2*lag+1))
    stdFilter = 0.0
    stdFilter(lag+1) = std(y(1:2*lag+1))

    if (stdFilter(lag+1)/avgFilter(lag+1)>0.1) then ! If the coefficient of variation exceeds 10%, the signal is too uneven at the start, possibly because of a peak.
        write(unit=*,fmt=1001)
1001        format(1X,'Warning: Peak detection might have failed, as there may be a peak at the edge of the frequency range.',/)
    end if
    do ii = lag+2, size(y)
        if (abs(y(ii) - avgFilter(ii-1)) > threshold * stdFilter(ii-1)) then
            ! Find only the largest outstanding value which is only the one greater than its predecessor and its successor
            if (y(ii) > avgFilter(ii-1) .AND. y(ii) > y(ii-1) .AND. y(ii) > y(ii+1)) then
                PeakDetect(ii) = 1
            end if
            filteredY(ii) = influence * y(ii) + (1 - influence) * filteredY(ii-1)
        else
            filteredY(ii) = y(ii)
        end if
        ! Modified with respect to the original code. Mean and standard deviation are calculted symmetrically around the current point
        avgFilter(ii) = mean(filteredY(ii-lag:ii+lag))
        stdFilter(ii) = std(filteredY(ii-lag:ii+lag))
    end do
end function PeakDetect

real function mean(y)
    !> @brief Calculates the mean of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    mean = sum(y)/N
end function mean

real function std(y)
    !> @brief Calculates the standard deviation of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    std = sqrt((N*dot_product(y,y) - sum(y)**2) / (N*(N-1)))
end function std

¡Para mi aplicación, el algoritmo funciona de maravilla! ingrese la descripción de la imagen aquí

Aunque
fuente
3

Si tiene sus datos en una tabla de base de datos, aquí hay una versión SQL de un algoritmo simple de puntaje z:

with data_with_zscore as (
    select
        date_time,
        value,
        value / (avg(value) over ()) as pct_of_mean,
        (value - avg(value) over ()) / (stdev(value) over ()) as z_score
    from {{tablename}}  where datetime > '2018-11-26' and datetime < '2018-12-03'
)


-- select all
select * from data_with_zscore 

-- select only points greater than a certain threshold
select * from data_with_zscore where z_score > abs(2)
Lanzamiento aéreo del océano
fuente
Su código hace algo más que el algoritmo que he propuesto. Su consulta simplemente calcula puntajes z ([punto de datos - media] / estándar), pero no incorpora la lógica de mi algoritmo que ignora las señales pasadas al calcular nuevos umbrales de señal. También ignora los tres parámetros (retraso, influencia, umbral). ¿Podría revisar su respuesta para incorporar la lógica real?
Jean-Paul
1
Si, tienes razón. Al principio pensé que podría salirse con la versión simplificada anterior. Desde entonces, he tomado su solución completa y la he portado a C #. Vea mi respuesta a continuación. Cuando tenga más tiempo, volveré a visitar esta versión de SQL e incorporaré su algoritmo. Por cierto, gracias por una excelente respuesta y explicación visual.
Ocean Airdrop
¡No hay problema y me alegra que el algoritmo pueda ayudarte! Gracias por su envío a C #, ese todavía faltaba. ¡Lo agregaré a la lista de traducciones!
Jean-Paul
3

Versión de Python que funciona con transmisiones en tiempo real (no recalcula todos los puntos de datos a la llegada de cada nuevo punto de datos). Es posible que desee ajustar lo que devuelve la función de clase; para mis propósitos, solo necesitaba las señales.

import numpy as np

class real_time_peak_detection():
    def __init__(self, array, lag, threshold, influence):
        self.y = list(array)
        self.length = len(self.y)
        self.lag = lag
        self.threshold = threshold
        self.influence = influence
        self.signals = [0] * len(self.y)
        self.filteredY = np.array(self.y).tolist()
        self.avgFilter = [0] * len(self.y)
        self.stdFilter = [0] * len(self.y)
        self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
        self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()

    def thresholding_algo(self, new_value):
        self.y.append(new_value)
        i = len(self.y) - 1
        self.length = len(self.y)
        if i < self.lag:
            return 0
        elif i == self.lag:
            self.signals = [0] * len(self.y)
            self.filteredY = np.array(self.y).tolist()
            self.avgFilter = [0] * len(self.y)
            self.stdFilter = [0] * len(self.y)
            self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
            self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()
            return 0

        self.signals += [0]
        self.filteredY += [0]
        self.avgFilter += [0]
        self.stdFilter += [0]

        if abs(self.y[i] - self.avgFilter[i - 1]) > self.threshold * self.stdFilter[i - 1]:
            if self.y[i] > self.avgFilter[i - 1]:
                self.signals[i] = 1
            else:
                self.signals[i] = -1

            self.filteredY[i] = self.influence * self.y[i] + (1 - self.influence) * self.filteredY[i - 1]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])
        else:
            self.signals[i] = 0
            self.filteredY[i] = self.y[i]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])

        return self.signals[i]
delicada
fuente
Gracias por publicar, he agregado su traducción a la lista.
Jean-Paul
3

Me permití crear una versión de JavaScript. ¿Podría ser útil? El javascript debe ser la transcripción directa del pseudocódigo dado anteriormente. Disponible como paquete npm y repositorio github:

Traducción Javascript:

// javascript port of: /programming/22583391/peak-signal-detection-in-realtime-timeseries-data/48895639#48895639

function sum(a) {
    return a.reduce((acc, val) => acc + val)
}

function mean(a) {
    return sum(a) / a.length
}

function stddev(arr) {
    const arr_mean = mean(arr)
    const r = function(acc, val) {
        return acc + ((val - arr_mean) * (val - arr_mean))
    }
    return Math.sqrt(arr.reduce(r, 0.0) / arr.length)
}

function smoothed_z_score(y, params) {
    var p = params || {}
    // init cooefficients
    const lag = p.lag || 5
    const threshold = p.threshold || 3.5
    const influence = p.influece || 0.5

    if (y === undefined || y.length < lag + 2) {
        throw ` ## y data array to short(${y.length}) for given lag of ${lag}`
    }
    //console.log(`lag, threshold, influence: ${lag}, ${threshold}, ${influence}`)

    // init variables
    var signals = Array(y.length).fill(0)
    var filteredY = y.slice(0)
    const lead_in = y.slice(0, lag)
    //console.log("1: " + lead_in.toString())

    var avgFilter = []
    avgFilter[lag - 1] = mean(lead_in)
    var stdFilter = []
    stdFilter[lag - 1] = stddev(lead_in)
    //console.log("2: " + stdFilter.toString())

    for (var i = lag; i < y.length; i++) {
        //console.log(`${y[i]}, ${avgFilter[i-1]}, ${threshold}, ${stdFilter[i-1]}`)
        if (Math.abs(y[i] - avgFilter[i - 1]) > (threshold * stdFilter[i - 1])) {
            if (y[i] > avgFilter[i - 1]) {
                signals[i] = +1 // positive signal
            } else {
                signals[i] = -1 // negative signal
            }
            // make influence lower
            filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i - 1]
        } else {
            signals[i] = 0 // no signal
            filteredY[i] = y[i]
        }

        // adjust the filters
        const y_lag = filteredY.slice(i - lag, i)
        avgFilter[i] = mean(y_lag)
        stdFilter[i] = stddev(y_lag)
    }

    return signals
}

module.exports = smoothed_z_score
Dirk Lüsebrink
fuente
Gracias por publicar tu traducción. He agregado su código a su respuesta para que la gente pueda verlo rápidamente. Agregaré tu traducción a la lista.
Jean-Paul
Por ahora, he portado algún otro algoritmo a JavaScript. Esta vez de Pyhon numérico, que me da más control y funciona mejor para mí. También empaquetado en npm y puede encontrar más información sobre algo de la universidad estatal de washington en su página de jupyter. npmjs.com/package/@joe_six/duarte-watanabe-peak-detection
Dirk Lüsebrink
2

Si el valor límite u otros criterios dependen de valores futuros, entonces la única solución (sin una máquina del tiempo u otro conocimiento de valores futuros) es retrasar cualquier decisión hasta que uno tenga suficientes valores futuros. Si desea un nivel superior a una media que abarque, por ejemplo, 20 puntos, debe esperar hasta que tenga al menos 19 puntos por delante de cualquier decisión máxima, de lo contrario, el siguiente nuevo punto podría perder completamente su umbral hace 19 puntos .

Su trama actual no tiene picos ... a menos que sepa de antemano que el siguiente punto no es 1e99, que después de reescalar la dimensión Y de su trama, sería plano hasta ese punto.

hotpaw2
fuente
Como dije antes, podemos suponer que si ocurre un pico, es tan grande como los picos en la imagen y se desvía significativamente de los valores 'normales'.
Jean-Paul
Si sabe qué tan grandes serán los picos de antemano, entonces preestablezca su media y / o umbral justo por debajo de ese valor.
hotpaw2
1
Y eso es exactamente lo que no sé de antemano.
Jean-Paul
1
Acabas de contradecirte y escribiste que se sabe que los picos son del tamaño de la imagen. O lo sabes o no.
hotpaw2
2
Estoy tratando de explicártelo. Tienes la idea ahora ¿verdad? 'Cómo identificar picos significativamente grandes'. Puede abordar el problema estadísticamente o con un algoritmo inteligente. Con .. As large as in the pictureQuise decir: para situaciones similares donde hay picos significativos y ruido básico.
Jean-Paul
2

Y aquí viene la implementación PHP del ZSCORE algo:

<?php
$y = array(1,7,1.1,1,0.9,1,1,1.1,1,0.9,1,1.1,1,1,0.9,1,1,1.1,1,1,1,1,1.1,0.9,1,1.1,1,1,0.9,
       1,1.1,1,1,1.1,1,0.8,0.9,1,1.2,0.9,1,1,1.1,1.2,1,1.5,10,3,2,5,3,2,1,1,1,0.9,1,1,3,
       2.6,4,3,3.2,2,1,1,0.8,4,4,2,2.5,1,1,1);

function mean($data, $start, $len) {
    $avg = 0;
    for ($i = $start; $i < $start+ $len; $i ++)
        $avg += $data[$i];
    return $avg / $len;
}

function stddev($data, $start,$len) {
    $mean = mean($data,$start,$len);
    $dev = 0;
    for ($i = $start; $i < $start+$len; $i++) 
        $dev += (($data[$i] - $mean) * ($data[$i] - $mean));
    return sqrt($dev / $len);
}

function zscore($data, $len, $lag= 20, $threshold = 1, $influence = 1) {

    $signals = array();
    $avgFilter = array();
    $stdFilter = array();
    $filteredY = array();
    $avgFilter[$lag - 1] = mean($data, 0, $lag);
    $stdFilter[$lag - 1] = stddev($data, 0, $lag);

    for ($i = 0; $i < $len; $i++) {
        $filteredY[$i] = $data[$i];
        $signals[$i] = 0;
    }


    for ($i=$lag; $i < $len; $i++) {
        if (abs($data[$i] - $avgFilter[$i-1]) > $threshold * $stdFilter[$lag - 1]) {
            if ($data[$i] > $avgFilter[$i-1]) {
                $signals[$i] = 1;
            }
            else {
                $signals[$i] = -1;
            }
            $filteredY[$i] = $influence * $data[$i] + (1 - $influence) * $filteredY[$i-1];
        } 
        else {
            $signals[$i] = 0;
            $filteredY[$i] = $data[$i];
        }

        $avgFilter[$i] = mean($filteredY, $i - $lag, $lag);
        $stdFilter[$i] = stddev($filteredY, $i - $lag, $lag);
    }
    return $signals;
}

$sig = zscore($y, count($y));

print_r($y); echo "<br><br>";
print_r($sig); echo "<br><br>";

for ($i = 0; $i < count($y); $i++) echo $i. " " . $y[$i]. " ". $sig[$i]."<br>";

?>
radhoo
fuente
Gracias por publicar, he agregado su traducción a la lista.
Jean-Paul
1
Un comentario: dado que este algoritmo se utilizará principalmente en datos muestreados, sugiero que implemente la desviación estándar de la muestra dividiendo por en ($len - 1)lugar de $lenenstddev()
Jean-Paul
1

En lugar de comparar un máximo con la media, también se pueden comparar los máximos con los mínimos adyacentes donde los mínimos solo se definen por encima de un umbral de ruido. Si el máximo local es> 3 veces (u otro factor de confianza) cualquiera de los mínimos adyacentes, entonces ese máximo es un pico. La determinación del pico es más precisa con ventanas móviles más anchas. Lo anterior usa un cálculo centrado en el medio de la ventana, por cierto, en lugar de un cálculo al final de la ventana (== retraso).

Tenga en cuenta que un máximo debe verse como un aumento de la señal antes y una disminución después.

Nichole
fuente
1

La función scipy.signal.find_peaks, como su nombre lo indica, es útil para esto. Pero es importante comprender bien sus parámetros widthy threshold, distance sobre todo,prominence obtener una buena extracción de picos.

Según mis pruebas y la documentación, el concepto de prominencia es "el concepto útil" para mantener los picos buenos y descartar los picos ruidosos.

¿Qué es la prominencia (topográfica) ? Es "la altura mínima necesaria para descender para llegar desde la cumbre a cualquier terreno más alto" , como se puede ver aquí:

La idea es:

Cuanto mayor es la prominencia, más "importante" es el pico.

mrk
fuente
1

Versión orientada a objetos del algoritmo z-score usando Mordern C +++

template<typename T>
class FindPeaks{
private:
    std::vector<T> m_input_signal;                      // stores input vector
    std::vector<T> m_array_peak_positive;               
    std::vector<T> m_array_peak_negative;               

public:
    FindPeaks(const std::vector<T>& t_input_signal): m_input_signal{t_input_signal}{ }

    void estimate(){
        int lag{5};
        T threshold{ 5 };                                                                                       // set a threshold
        T influence{ 0.5 };                                                                                    // value between 0 to 1, 1 is normal influence and 0.5 is half the influence

        std::vector<T> filtered_signal(m_input_signal.size(), 0.0);                                             // placeholdered for smooth signal, initialie with all zeros
        std::vector<int> signal(m_input_signal.size(), 0);                                                          // vector that stores where the negative and positive located
        std::vector<T> avg_filtered(m_input_signal.size(), 0.0);                                                // moving averages
        std::vector<T> std_filtered(m_input_signal.size(), 0.0);                                                // moving standard deviation

        avg_filtered[lag] = findMean(m_input_signal.begin(), m_input_signal.begin() + lag);                         // pass the iteartor to vector
        std_filtered[lag] = findStandardDeviation(m_input_signal.begin(), m_input_signal.begin() + lag);

        for (size_t iLag = lag + 1; iLag < m_input_signal.size(); ++iLag) {                                         // start index frm 
            if (std::abs(m_input_signal[iLag] - avg_filtered[iLag - 1]) > threshold * std_filtered[iLag - 1]) {     // check if value is above threhold             
                if ((m_input_signal[iLag]) > avg_filtered[iLag - 1]) {
                    signal[iLag] = 1;                                                                               // assign positive signal
                }
                else {
                    signal[iLag] = -1;                                                                                  // assign negative signal
                }
                filtered_signal[iLag] = influence * m_input_signal[iLag] + (1 - influence) * filtered_signal[iLag - 1];        // exponential smoothing
            }
            else {
                signal[iLag] = 0;                                                                                         // no signal
                filtered_signal[iLag] = m_input_signal[iLag];
            }

            avg_filtered[iLag] = findMean(filtered_signal.begin() + (iLag - lag), filtered_signal.begin() + iLag);
            std_filtered[iLag] = findStandardDeviation(filtered_signal.begin() + (iLag - lag), filtered_signal.begin() + iLag);

        }

        for (size_t iSignal = 0; iSignal < m_input_signal.size(); ++iSignal) {
            if (signal[iSignal] == 1) {
                m_array_peak_positive.emplace_back(m_input_signal[iSignal]);                                        // store the positive peaks
            }
            else if (signal[iSignal] == -1) {
                m_array_peak_negative.emplace_back(m_input_signal[iSignal]);                                         // store the negative peaks
            }
        }
        printVoltagePeaks(signal, m_input_signal);

    }

    std::pair< std::vector<T>, std::vector<T> > get_peaks()
    {
        return std::make_pair(m_array_peak_negative, m_array_peak_negative);
    }

};


template<typename T1, typename T2 >
void printVoltagePeaks(std::vector<T1>& m_signal, std::vector<T2>& m_input_signal) {
    std::ofstream output_file("./voltage_peak.csv");
    std::ostream_iterator<T2> output_iterator_voltage(output_file, ",");
    std::ostream_iterator<T1> output_iterator_signal(output_file, ",");
    std::copy(m_input_signal.begin(), m_input_signal.end(), output_iterator_voltage);
    output_file << "\n";
    std::copy(m_signal.begin(), m_signal.end(), output_iterator_signal);
}

template<typename iterator_type>
typename std::iterator_traits<iterator_type>::value_type findMean(iterator_type it, iterator_type end)
{
    /* function that receives iterator to*/
    typename std::iterator_traits<iterator_type>::value_type sum{ 0.0 };
    int counter = 0;
    while (it != end) {
        sum += *(it++);
        counter++;
    }
    return sum / counter;
}

template<typename iterator_type>
typename std::iterator_traits<iterator_type>::value_type findStandardDeviation(iterator_type it, iterator_type end)
{
    auto mean = findMean(it, end);
    typename std::iterator_traits<iterator_type>::value_type sum_squared_error{ 0.0 };
    int counter{ 0 };
    while (it != end) {
        sum_squared_error += std::pow((*(it++) - mean), 2);
        counter++;
    }
    auto standard_deviation = std::sqrt(sum_squared_error / (counter - 1));
    return standard_deviation;
}
Spandyie
fuente
2
Buena traducción Sería poco mejor si el objeto también ahorra las filtered_signal, signal, avg_filteredy std_filteredcomo variables privadas y sólo actualiza las matrices una vez cuando un nuevo punto de datos (llega ahora los bucles de código más de todos los puntos de datos cada vez que se llama). Eso mejoraría el rendimiento de su código y se adapta aún mejor a la estructura de OOP.
Jean-Paul