Pandas: media rodante por intervalo de tiempo

85

Soy nuevo en Pandas ... Tengo un montón de datos de encuestas; Quiero calcular una media móvil para obtener una estimación de cada día en función de una ventana de tres días. Según tengo entendido por esta pregunta , las funciones rolling_ * calculan la ventana en función de un número específico de valores, y no de un rango de fecha y hora específico.

¿Existe una función diferente que implemente esta funcionalidad? ¿O estoy atrapado escribiendo el mío?

EDITAR:

Datos de entrada de muestra:

polls_subset.tail(20)
Out[185]: 
            favorable  unfavorable  other

enddate                                  
2012-10-25       0.48         0.49   0.03
2012-10-25       0.51         0.48   0.02
2012-10-27       0.51         0.47   0.02
2012-10-26       0.56         0.40   0.04
2012-10-28       0.48         0.49   0.04
2012-10-28       0.46         0.46   0.09
2012-10-28       0.48         0.49   0.03
2012-10-28       0.49         0.48   0.03
2012-10-30       0.53         0.45   0.02
2012-11-01       0.49         0.49   0.03
2012-11-01       0.47         0.47   0.05
2012-11-01       0.51         0.45   0.04
2012-11-03       0.49         0.45   0.06
2012-11-04       0.53         0.39   0.00
2012-11-04       0.47         0.44   0.08
2012-11-04       0.49         0.48   0.03
2012-11-04       0.52         0.46   0.01
2012-11-04       0.50         0.47   0.03
2012-11-05       0.51         0.46   0.02
2012-11-07       0.51         0.41   0.00

La salida tendría solo una fila para cada fecha.

EDITAR x2: error tipográfico fijo

Anov
fuente
2
Hay un problema abierto en el rastreador de errores de Pandas que solicita esta funcionalidad: github.com/pydata/pandas/issues/936 . La funcionalidad aún no existe. Las respuestas a esta pregunta describen una forma de obtener el efecto deseado, pero normalmente será bastante lento en comparación con las rolling_*funciones integradas.
BrenBarn

Respuestas:

73

Mientras tanto, se agregó una capacidad de ventana de tiempo. Vea este enlace .

In [1]: df = DataFrame({'B': range(5)})

In [2]: df.index = [Timestamp('20130101 09:00:00'),
   ...:             Timestamp('20130101 09:00:02'),
   ...:             Timestamp('20130101 09:00:03'),
   ...:             Timestamp('20130101 09:00:05'),
   ...:             Timestamp('20130101 09:00:06')]

In [3]: df
Out[3]: 
                     B
2013-01-01 09:00:00  0
2013-01-01 09:00:02  1
2013-01-01 09:00:03  2
2013-01-01 09:00:05  3
2013-01-01 09:00:06  4

In [4]: df.rolling(2, min_periods=1).sum()
Out[4]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  5.0
2013-01-01 09:00:06  7.0

In [5]: df.rolling('2s', min_periods=1).sum()
Out[5]: 
                       B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  3.0
2013-01-01 09:00:06  7.0
Martín
fuente
Esta debería ser la mejor respuesta.
Ivan
6
La documentación de los 2s (como '') de desplazamiento argumentos rollingpueden tomar está aquí: pandas.pydata.org/pandas-docs/stable/user_guide/...
Guilherme Salomé
2
¿Qué sucede si hay varias columnas en el marco de datos? ¿Cómo especificamos columnas específicas?
Brain_overflowed
@Brain_overflowed establecido como índice
jamfie
El min_period no parece confiable con este método. Para min_periods> 1, es posible que obtenga NaN donde no los espera debido a la precisión de la marca de tiempo / frecuencia de muestreo variable
Albert James Teddy
50

¿Qué pasa con algo como esto:

Primero vuelva a muestrear el marco de datos en intervalos de 1D. Esto toma la media de los valores de todos los días duplicados. Utilice la fill_methodopción para completar los valores de fecha que faltan. A continuación, pase el marco remuestreado pd.rolling_meancon una ventana de 3 y min_periods = 1:

pd.rolling_mean(df.resample("1D", fill_method="ffill"), window=3, min_periods=1)

            favorable  unfavorable     other
enddate
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.527500     0.442500  0.032500
2012-10-27   0.521667     0.451667  0.028333
2012-10-28   0.515833     0.450000  0.035833
2012-10-29   0.488333     0.476667  0.038333
2012-10-30   0.495000     0.470000  0.038333
2012-10-31   0.512500     0.460000  0.029167
2012-11-01   0.516667     0.456667  0.026667
2012-11-02   0.503333     0.463333  0.033333
2012-11-03   0.490000     0.463333  0.046667
2012-11-04   0.494000     0.456000  0.043333
2012-11-05   0.500667     0.452667  0.036667
2012-11-06   0.507333     0.456000  0.023333
2012-11-07   0.510000     0.443333  0.013333

ACTUALIZACIÓN : Como señala Ben en los comentarios, con pandas 0.18.0 la sintaxis ha cambiado . Con la nueva sintaxis esto sería:

df.resample("1d").sum().fillna(0).rolling(window=3, min_periods=1).mean()
Zelazny7
fuente
lo siento, Pandas newb, ¿qué usa exactamente ffill como regla para proporcionar valores faltantes?
Anov
1
Hay un par de opciones de relleno. ffillsignifica relleno hacia adelante y simplemente propone el valor no perdido más reciente. De manera similar, bfillpara el relleno al revés, hace lo mismo en orden inverso.
Zelazny7
9
Quizás me equivoque aquí, pero ¿está ignorando varias lecturas del mismo día (al tomar la media móvil, esperaría que dos lecturas tengan más peso que una ...)
Andy Hayden
4
Gran respuesta. Solo notando que en pandas 0.18.0 la sintaxis cambió . La nueva sintaxis es:df.resample("1D").ffill(limit=0).rolling(window=3, min_periods=1).mean()
Ben
1
Para replicar los resultados de la respuesta original en pandas versión 0.18.1 estoy usando: df.resample("1d").mean().rolling(window=3, min_periods=1).mean()
JohnE
33

Acabo de tener la misma pregunta pero con puntos de datos espaciados irregularmente. Remuestrear no es realmente una opción aquí. Entonces creé mi propia función. Quizás también sea útil para otros:

from pandas import Series, DataFrame
import pandas as pd
from datetime import datetime, timedelta
import numpy as np

def rolling_mean(data, window, min_periods=1, center=False):
    ''' Function that computes a rolling mean

    Parameters
    ----------
    data : DataFrame or Series
           If a DataFrame is passed, the rolling_mean is computed for all columns.
    window : int or string
             If int is passed, window is the number of observations used for calculating 
             the statistic, as defined by the function pd.rolling_mean()
             If a string is passed, it must be a frequency string, e.g. '90S'. This is
             internally converted into a DateOffset object, representing the window size.
    min_periods : int
                  Minimum number of observations in window required to have a value.

    Returns
    -------
    Series or DataFrame, if more than one column    
    '''
    def f(x):
        '''Function to apply that actually computes the rolling mean'''
        if center == False:
            dslice = col[x-pd.datetools.to_offset(window).delta+timedelta(0,0,1):x]
                # adding a microsecond because when slicing with labels start and endpoint
                # are inclusive
        else:
            dslice = col[x-pd.datetools.to_offset(window).delta/2+timedelta(0,0,1):
                         x+pd.datetools.to_offset(window).delta/2]
        if dslice.size < min_periods:
            return np.nan
        else:
            return dslice.mean()

    data = DataFrame(data.copy())
    dfout = DataFrame()
    if isinstance(window, int):
        dfout = pd.rolling_mean(data, window, min_periods=min_periods, center=center)
    elif isinstance(window, basestring):
        idx = Series(data.index.to_pydatetime(), index=data.index)
        for colname, col in data.iterkv():
            result = idx.apply(f)
            result.name = colname
            dfout = dfout.join(result, how='outer')
    if dfout.columns.size == 1:
        dfout = dfout.ix[:,0]
    return dfout


# Example
idx = [datetime(2011, 2, 7, 0, 0),
       datetime(2011, 2, 7, 0, 1),
       datetime(2011, 2, 7, 0, 1, 30),
       datetime(2011, 2, 7, 0, 2),
       datetime(2011, 2, 7, 0, 4),
       datetime(2011, 2, 7, 0, 5),
       datetime(2011, 2, 7, 0, 5, 10),
       datetime(2011, 2, 7, 0, 6),
       datetime(2011, 2, 7, 0, 8),
       datetime(2011, 2, 7, 0, 9)]
idx = pd.Index(idx)
vals = np.arange(len(idx)).astype(float)
s = Series(vals, index=idx)
rm = rolling_mean(s, window='2min')
usuario2689410
fuente
¿Podría incluir las importaciones relevantes?
Bryce Drennan
¿Puede proporcionar un marco de datos de entrada de ejemplo que funcione si se calcula una ventana deslizante de intervalo de tiempo? Gracias
joshlk
Se agregó un ejemplo a la publicación original.
user2689410
5
Lo mismo ahora se puede hacer usandos.rolling('2min', min_periods=1).mean()
kampta
8

El código de user2689410 era exactamente lo que necesitaba. Proporcionando mi versión (créditos al usuario 2689410), que es más rápida debido al cálculo de la media a la vez para filas enteras en el DataFrame.

Espero que mis convenciones de sufijos sean legibles: _s: string, _i: int, _b: bool, _ser: Series y _df: DataFrame. Donde encuentre varios sufijos, el tipo puede ser ambos.

import pandas as pd
from datetime import datetime, timedelta
import numpy as np

def time_offset_rolling_mean_df_ser(data_df_ser, window_i_s, min_periods_i=1, center_b=False):
    """ Function that computes a rolling mean

    Credit goes to user2689410 at http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval

    Parameters
    ----------
    data_df_ser : DataFrame or Series
         If a DataFrame is passed, the time_offset_rolling_mean_df_ser is computed for all columns.
    window_i_s : int or string
         If int is passed, window_i_s is the number of observations used for calculating
         the statistic, as defined by the function pd.time_offset_rolling_mean_df_ser()
         If a string is passed, it must be a frequency string, e.g. '90S'. This is
         internally converted into a DateOffset object, representing the window_i_s size.
    min_periods_i : int
         Minimum number of observations in window_i_s required to have a value.

    Returns
    -------
    Series or DataFrame, if more than one column

    >>> idx = [
    ...     datetime(2011, 2, 7, 0, 0),
    ...     datetime(2011, 2, 7, 0, 1),
    ...     datetime(2011, 2, 7, 0, 1, 30),
    ...     datetime(2011, 2, 7, 0, 2),
    ...     datetime(2011, 2, 7, 0, 4),
    ...     datetime(2011, 2, 7, 0, 5),
    ...     datetime(2011, 2, 7, 0, 5, 10),
    ...     datetime(2011, 2, 7, 0, 6),
    ...     datetime(2011, 2, 7, 0, 8),
    ...     datetime(2011, 2, 7, 0, 9)]
    >>> idx = pd.Index(idx)
    >>> vals = np.arange(len(idx)).astype(float)
    >>> ser = pd.Series(vals, index=idx)
    >>> df = pd.DataFrame({'s1':ser, 's2':ser+1})
    >>> time_offset_rolling_mean_df_ser(df, window_i_s='2min')
                          s1   s2
    2011-02-07 00:00:00  0.0  1.0
    2011-02-07 00:01:00  0.5  1.5
    2011-02-07 00:01:30  1.0  2.0
    2011-02-07 00:02:00  2.0  3.0
    2011-02-07 00:04:00  4.0  5.0
    2011-02-07 00:05:00  4.5  5.5
    2011-02-07 00:05:10  5.0  6.0
    2011-02-07 00:06:00  6.0  7.0
    2011-02-07 00:08:00  8.0  9.0
    2011-02-07 00:09:00  8.5  9.5
    """

    def calculate_mean_at_ts(ts):
        """Function (closure) to apply that actually computes the rolling mean"""
        if center_b == False:
            dslice_df_ser = data_df_ser[
                ts-pd.datetools.to_offset(window_i_s).delta+timedelta(0,0,1):
                ts
            ]
            # adding a microsecond because when slicing with labels start and endpoint
            # are inclusive
        else:
            dslice_df_ser = data_df_ser[
                ts-pd.datetools.to_offset(window_i_s).delta/2+timedelta(0,0,1):
                ts+pd.datetools.to_offset(window_i_s).delta/2
            ]
        if  (isinstance(dslice_df_ser, pd.DataFrame) and dslice_df_ser.shape[0] < min_periods_i) or \
            (isinstance(dslice_df_ser, pd.Series) and dslice_df_ser.size < min_periods_i):
            return dslice_df_ser.mean()*np.nan   # keeps number format and whether Series or DataFrame
        else:
            return dslice_df_ser.mean()

    if isinstance(window_i_s, int):
        mean_df_ser = pd.rolling_mean(data_df_ser, window=window_i_s, min_periods=min_periods_i, center=center_b)
    elif isinstance(window_i_s, basestring):
        idx_ser = pd.Series(data_df_ser.index.to_pydatetime(), index=data_df_ser.index)
        mean_df_ser = idx_ser.apply(calculate_mean_at_ts)

    return mean_df_ser
Mark Horvath
fuente
3

Este ejemplo parece requerir una media ponderada como se sugiere en el comentario de @ andyhayden. Por ejemplo, hay dos encuestas el 25/10 y una el 26/10 y el 27/10. Si solo vuelve a muestrear y luego toma la media, esto le da el doble de peso a las encuestas del 26/10 y al 27/10 en comparación con las del 25/10.

Para dar el mismo peso a cada encuesta en lugar de igual peso a cada día , puede hacer algo como lo siguiente.

>>> wt = df.resample('D',limit=5).count()

            favorable  unfavorable  other
enddate                                  
2012-10-25          2            2      2
2012-10-26          1            1      1
2012-10-27          1            1      1

>>> df2 = df.resample('D').mean()

            favorable  unfavorable  other
enddate                                  
2012-10-25      0.495        0.485  0.025
2012-10-26      0.560        0.400  0.040
2012-10-27      0.510        0.470  0.020

Eso le brinda los ingredientes crudos para hacer una media basada en encuestas en lugar de una media diaria. Como antes, las encuestas se promedian el 25/10, pero el peso del 25/10 también se almacena y es el doble del peso del 26/10 o el 27/10 para reflejar que se tomaron dos encuestas el 25/10.

>>> df3 = df2 * wt
>>> df3 = df3.rolling(3,min_periods=1).sum()
>>> wt3 = wt.rolling(3,min_periods=1).sum()

>>> df3 = df3 / wt3  

            favorable  unfavorable     other
enddate                                     
2012-10-25   0.495000     0.485000  0.025000
2012-10-26   0.516667     0.456667  0.030000
2012-10-27   0.515000     0.460000  0.027500
2012-10-28   0.496667     0.465000  0.041667
2012-10-29   0.484000     0.478000  0.042000
2012-10-30   0.488000     0.474000  0.042000
2012-10-31   0.530000     0.450000  0.020000
2012-11-01   0.500000     0.465000  0.035000
2012-11-02   0.490000     0.470000  0.040000
2012-11-03   0.490000     0.465000  0.045000
2012-11-04   0.500000     0.448333  0.035000
2012-11-05   0.501429     0.450000  0.032857
2012-11-06   0.503333     0.450000  0.028333
2012-11-07   0.510000     0.435000  0.010000

Tenga en cuenta que la media móvil para el 27/10 es ahora 0,51500 (ponderada por encuesta) en lugar de 52,1667 (ponderada por día).

También tenga en cuenta que ha habido cambios en las API para resampley a rollingpartir de la versión 0.18.0.

rodando (qué hay de nuevo en pandas 0.18.0)

remuestrear (novedades de pandas 0.18.0)

JohnE
fuente
3

Para mantenerlo básico, utilicé un bucle y algo como esto para comenzar (mi índice son fechas y horas):

import pandas as pd
import datetime as dt

#populate your dataframe: "df"
#...

df[df.index<(df.index[0]+dt.timedelta(hours=1))] #gives you a slice. you can then take .sum() .mean(), whatever

y luego puede ejecutar funciones en ese segmento. Puede ver cómo agregar un iterador para hacer que el inicio de la ventana sea diferente al primer valor en su índice de marcos de datos, luego hace rodar la ventana (podría usar una regla> para el inicio también, por ejemplo).

Tenga en cuenta que esto puede ser menos eficiente para datos SUPER grandes o incrementos muy pequeños, ya que su segmentación puede volverse más extenuante (funciona para mí lo suficientemente bien para cientos de miles de filas de datos y varias columnas, aunque para ventanas por hora en unas pocas semanas)

Vlox
fuente
2

Encontré que el código user2689410 se rompió cuando intenté con window = '1M' ya que el delta en el mes comercial arrojó este error:

AttributeError: 'MonthEnd' object has no attribute 'delta'

Agregué la opción de pasar directamente un delta de tiempo relativo, para que pueda hacer cosas similares para períodos definidos por el usuario.

Gracias por los consejos, aquí está mi intento, espero que sea de utilidad.

def rolling_mean(data, window, min_periods=1, center=False):
""" Function that computes a rolling mean
Reference:
    http://stackoverflow.com/questions/15771472/pandas-rolling-mean-by-time-interval

Parameters
----------
data : DataFrame or Series
       If a DataFrame is passed, the rolling_mean is computed for all columns.
window : int, string, Timedelta or Relativedelta
         int - number of observations used for calculating the statistic,
               as defined by the function pd.rolling_mean()
         string - must be a frequency string, e.g. '90S'. This is
                  internally converted into a DateOffset object, and then
                  Timedelta representing the window size.
         Timedelta / Relativedelta - Can directly pass a timedeltas.
min_periods : int
              Minimum number of observations in window required to have a value.
center : bool
         Point around which to 'center' the slicing.

Returns
-------
Series or DataFrame, if more than one column
"""
def f(x, time_increment):
    """Function to apply that actually computes the rolling mean
    :param x:
    :return:
    """
    if not center:
        # adding a microsecond because when slicing with labels start
        # and endpoint are inclusive
        start_date = x - time_increment + timedelta(0, 0, 1)
        end_date = x
    else:
        start_date = x - time_increment/2 + timedelta(0, 0, 1)
        end_date = x + time_increment/2
    # Select the date index from the
    dslice = col[start_date:end_date]

    if dslice.size < min_periods:
        return np.nan
    else:
        return dslice.mean()

data = DataFrame(data.copy())
dfout = DataFrame()
if isinstance(window, int):
    dfout = pd.rolling_mean(data, window, min_periods=min_periods, center=center)

elif isinstance(window, basestring):
    time_delta = pd.datetools.to_offset(window).delta
    idx = Series(data.index.to_pydatetime(), index=data.index)
    for colname, col in data.iteritems():
        result = idx.apply(lambda x: f(x, time_delta))
        result.name = colname
        dfout = dfout.join(result, how='outer')

elif isinstance(window, (timedelta, relativedelta)):
    time_delta = window
    idx = Series(data.index.to_pydatetime(), index=data.index)
    for colname, col in data.iteritems():
        result = idx.apply(lambda x: f(x, time_delta))
        result.name = colname
        dfout = dfout.join(result, how='outer')

if dfout.columns.size == 1:
    dfout = dfout.ix[:, 0]
return dfout

Y el ejemplo con una ventana de tiempo de 3 días para calcular la media:

from pandas import Series, DataFrame
import pandas as pd
from datetime import datetime, timedelta
import numpy as np
from dateutil.relativedelta import relativedelta

idx = [datetime(2011, 2, 7, 0, 0),
           datetime(2011, 2, 7, 0, 1),
           datetime(2011, 2, 8, 0, 1, 30),
           datetime(2011, 2, 9, 0, 2),
           datetime(2011, 2, 10, 0, 4),
           datetime(2011, 2, 11, 0, 5),
           datetime(2011, 2, 12, 0, 5, 10),
           datetime(2011, 2, 12, 0, 6),
           datetime(2011, 2, 13, 0, 8),
           datetime(2011, 2, 14, 0, 9)]
idx = pd.Index(idx)
vals = np.arange(len(idx)).astype(float)
s = Series(vals, index=idx)
# Now try by passing the 3 days as a relative time delta directly.
rm = rolling_mean(s, window=relativedelta(days=3))
>>> rm
Out[2]: 
2011-02-07 00:00:00    0.0
2011-02-07 00:01:00    0.5
2011-02-08 00:01:30    1.0
2011-02-09 00:02:00    1.5
2011-02-10 00:04:00    3.0
2011-02-11 00:05:00    4.0
2011-02-12 00:05:10    5.0
2011-02-12 00:06:00    5.5
2011-02-13 00:08:00    6.5
2011-02-14 00:09:00    7.5
Name: 0, dtype: float64
InterwebIsGran
fuente
0

Compruebe que su índice sea realmente datetime, no. str Puede ser útil:

data.index = pd.to_datetime(data['Index']).values
evgps
fuente