Necesito capturar la forma de onda de una señal de baja amplitud que se encuentra en la parte superior de un componente de mayor amplitud y variación lenta. Estoy pensando en usar un ADC con dos canales, y alimentar uno de ellos con una versión filtrada de paso bajo de la señal y el otro con una versión amplificada, filtrada de paso alto de la señal. Eso aumentaría la resolución aparente de mi ADC. ¿Me equivoco? ¿Puedes prever algún problema con esto?
Olvidé decir que también tengo que capturar el componente de baja frecuencia (el algoritmo necesita el valor promedio de la señal).
El componente de "alta" frecuencia va de 0.01 hertz a 10 hertz. El componente de baja frecuencia es principalmente el valor promedio de la señal, pero puede cambiar lentamente. El componente de cambio más rápido puede tener una amplitud 100 veces menor que el valor promedio máximo. El microcontrolador que usaremos tiene un ADC de 12 bits (no puedo cambiar eso), pero con muchos canales.
Respuestas:
Esta es una muy buena idea. Los sensores táctiles BioTac de Syntouch hacen lo mismo. Tienen un sensor de presión dentro de ellos que captura tanto la parte de baja frecuencia de la señal a aproximadamente 50 sps, como los componentes de alta frecuencia amplificados y muestreados a 2000 sps. Esto funciona de maravilla.
Sin embargo, no sé si realmente puede combinar estas dos señales para crear una resolución más alta, es decir, más bits. Es posible que pueda realizar un procesamiento de señal inteligente, pero no sería trivial.
Otra forma de aumentar la resolución ADC es mediante sobremuestreo . Si toma 16 muestras de 12 bits (y suponiendo que haya al menos un LSB de ruido), entonces realmente habrá aumentado la resolución efectiva.
fuente
Quizás podría alimentar la forma de onda sin procesar a 1 canal ADC, luego usar un DAC controlado por su microcontrolador (o lo que sea que esté ejecutando su algoritmo) para restar el componente de baja frecuencia, luego amplificar la señal residual a un segundo canal ADC. El DAC podría incluso ser un DAC delta-sigma.
Creo que esto le daría mejores resultados que si usa un filtro de paso alto analógico, porque la función de transferencia de entrada sin formato al segundo canal se caracterizaría más fácilmente si se realizara digitalmente, en comparación con una función de transferencia desconocida (y potencialmente cambiante) para término análogo.
Pero es difícil decir sin conocer el contenido de frecuencia + otros requisitos.
fuente
Esto no tiene mucho sentido. Como aparentemente solo le importan las frecuencias altas, ¿por qué no simplemente presentar la señal filtrada de paso alto al A / D? Nada en su descripción explica por qué quiere mirar la señal de baja frecuencia. Introducir eso en un A / D no va a hacer nada útil.
Si las dos frecuencias están lo suficientemente juntas como para separarlas en el hardware, entonces podría poner la señal compuesta en un A / D y filtrarla digitalmente. Sin embargo, el A / D tendría que tener una resolución suficiente para la señal pequeña y tener el rango para la señal lenta grande y la muestra lo suficientemente rápida como para representar adecuadamente la señal rápida. Esto puede no ser posible.
Tal vez podamos sugerir algo más concreto si da detalles del rango de amplitud y frecuencia de las dos señales, y con qué resolución o relación señal / ruido necesita medir la señal rápida.
fuente
Use un par de filtros de paso de banda de ganancia fija sintonizados para que coincidan con la frecuencia central de cada una de las dos señales componentes. Alimente cada señal separada a su propio ADC. Voila ... Trabajo hecho.
fuente