Acabo de leer algunas páginas en el libro de Sipser Introducción a la teoría de la computación sobre el problema posterior a la correspondencia, y estoy pensando que PCP está realmente en NP. El certificador es: para una configuración de entrada de pile concatenando como una cadena y concatenando como una cadena , luego compare y para ver si los dos son iguales y luego concluya que la entrada es en realidad una solución para PCP.
complexity-theory
decision-problem
np
phhoang
fuente
fuente
Respuestas:
El problema de la correspondencia Post es indecidible, y en particular es no en NP. La razón por la que su idea no funciona es que el testigo no es necesariamente de tamaño polinómico (de hecho, lo acaba de probar). Es decir, para que su certificador demuestre que el problema de la correspondencia posterior está en NP, debe ejecutarse en tiempo polinómico (en términos del tamaño de la instancia de PCP ). Resulta que en este caso no siempre hay una solución de tamaño polinómico, incluso cuando el problema es solucionable. De hecho, no hay límite computable en el tamaño de una solución potencial, ya que de lo contrario el problema sería decidible.
fuente
Su testigo es polinómico en el tamaño de la solución, no en el tamaño de la entrada. No tiene forma de limitar la longitud de las posibles soluciones. Su prueba muestra que PCP es recursivamente enumerable.
fuente