La posterior más larga y común de dos cuerdas
/*
This is an implementation that efficiently
finds the longest common subsequence of
two strings.
Let n be the size of first string and
m the size of the second string.
Time complexity: O(nm)
Space complexity: O(nm)
*/
import java.util.Collections;
import java.util.List;
import java.util.ArrayList;
public class LongestCommonSubsequence {
public static void main(String[] args) {
String str1 = "ZXVVYZW", str2 = "XKYKZPW";
// Below outputs: [X, Y, Z, W]
System.out.println(longestCommonSubsequence(str1, str2));
}
private static List<Character> longestCommonSubsequence(String str1, String str2) {
if (str1.length() == 0 || str2.length() == 0)
return new ArrayList<Character>();
// Matrix storing lengths of longest subsequence
// for different prefix combinations
int[][] L = new int[str1.length() + 1][str2.length() + 1];
List<Character> result = new ArrayList<>();
for (int i = 0; i < L[0].length; i++) {
L[0][i] = 0;
}
for (int i = 0; i < L.length; i++) {
L[i][0] = 0;
}
// Solve the problem using dynamic programming
for (int i = 1; i < L.length; i++) {
for (int j = 1; j < L[i].length; j++) {
// Distinguish between case where current
// chars match up and case where they don't
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
L[i][j] = 1 + L[i - 1][j - 1];
} else {
L[i][j] = Math.max(L[i - 1][j], L[i][j - 1]);
}
}
}
// Build the sequence
int i = L.length - 1, j = L[0].length - 1;
while (i >= 1 && j >= 1) {
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
result.add(str1.charAt(i - 1));
i--;
j--;
} else {
if (L[i - 1][j] > L[i][j - 1]) {
i--;
} else {
j--;
}
}
}
Collections.reverse(result);
return result;
}
}
Wissam