No estoy seguro de si esta es la comunidad correcta para preguntar esto, pero aquí va.
Uno de mis colegas se encontró con este código en el curso del uso de la Regresión Cuantil con el paquete R. El código relevante dice que llama código fortran. Encontramos ese archivo fortran, pero no sabemos qué es este otro archivo. Es un archivo .f, pero no es fortran porque usa una condición! = If (fortran usa NE), usa corchetes, y finalmente las declaraciones if / do no se terminan correctamente.
Sin embargo, es muy similar a fortran, tanto que mis editores reconocen la mayor parte del código y las declaraciones de color en consecuencia. Lo que sabemos:
-comentarios especificados por hash, #
-no igual denotado por explosión igual,! =
-suboutines definidos como:
subroutine sub_name(arguments)
sub_code
return
end
Las declaraciones -if / do no tienen líneas de terminación, pero están contenidas entre llaves
-si formato de declaración:
if(dabs(s(i))<eps){
z(i)=dmax1(s(i), zero) + eps
w(i)=dmax1(-s(i),zero) + eps
}
else {
z(i)=dmax1(s(i), zero)
w(i)=dmax1(-s(i),zero)
}
-do formato de declaración:
do i = 1,n{
d(i) = one/(z(i)/x(i) + w(i)/s(i))
ds(i)=z(i)-w(i)
dz(i)=d(i)*ds(i)
}
Aquí está la totalidad del archivo, si ayuda. rqfnb.f
subroutine rqfnb(n,p,a,y,rhs,d,u,beta,eps,wn,wp,nit,info)
integer n,p,info,nit(3)
double precision a(p,n),y(n),rhs(p),d(n),u(n),wn(n,9),wp(p,p+3)
double precision one,beta,eps
parameter( one = 1.0d0)
call lpfnb(n,p,a,y,rhs,d,u,beta,eps,wn(1,1),wn(1,2),
wp(1,1),wn(1,3),wn(1,4),wn(1,5),wn(1,6),
wp(1,2),wn(1,7),wn(1,8),wn(1,9),wp(1,3),wp(1,4),nit,info)
return
end
# This is a revised form of my primal-dual log barrier form of the
# interior point LP solver based on Lustig, Marsten and Shanno ORSA J Opt 1992.
# It is a projected Newton primal-dual logarithmic barrier method which uses
# the predictor-corrector approach of Mehrotra for the mu steps.
# For the sake of brevity we will call it a Frisch-Newton algorithm.
# Problem:
# min c'x s.t. Ax=b, 0<=x<=u
#
# Denote dx,dy,dw,ds,dz as the steps for the respective variables x,y,w,s,z
#
subroutine lpfnb(n,p,a,c,b,d,u,beta,eps,x,s,y,z,w,
dx,ds,dy,dz,dw,dr,rhs,ada,nit,info)
integer n,p,pp,i,info,nit(3),maxit
double precision a(p,n),c(n),b(p)
double precision zero,one,mone,big,ddot,dmax1,dmin1,dxdz,dsdw
double precision deltap,deltad,beta,eps,mu,gap,g
double precision x(n),u(n),s(n),y(p),z(n),w(n),d(n),rhs(p),ada(p,p)
double precision dx(n),ds(n),dy(p),dz(n),dw(n),dr(n)
parameter( zero = 0.0d0)
parameter( one = 1.0d0)
parameter( mone = -1.0d0)
parameter( big = 1.0d+20)
parameter( maxit = 50)
# Initialization: We follow the notation of LMS
# On input we require:
#
# c = n-vector of marginal costs (-y in the rq problem)
# a = p by n matrix of linear constraints (x' in rq)
# b = p-vector of rhs ((1-tau)x'e in rq)
# u = upper bound vector ( e in rq)
# beta = barrier parameter, LMS recommend .99995
# eps = convergence tolerance, LMS recommend 10d-8
#
# the integer vector nit returns iteration counts
# the integer info contains an error code from the Cholesky in stepy
# info = 0 is fine
# info < 0 invalid argument to dposv
# info > 0 singular matrix
nit(1)=0
nit(2)=0
nit(3)=n
pp=p*p
# Start at the OLS estimate for the dual vector y
call dgemv('N',p,n,one,a,p,c,1,zero,y,1)
do i=1,n
d(i)=one
call stepy(n,p,a,d,y,ada,info)
if(info != 0) return
# put current residual vector in s (temporarily)
call dcopy(n,c,1,s,1)
call dgemv('T',p,n,mone,a,p,y,1,one,s,1)
# Initialize remaining variables
do i=1,n{
if(dabs(s(i))<eps){
z(i)=dmax1(s(i), zero) + eps
w(i)=dmax1(-s(i),zero) + eps
}
else {
z(i)=dmax1(s(i), zero)
w(i)=dmax1(-s(i),zero)
}
s(i)=u(i)-x(i)
}
gap = ddot(n,z,1,x,1)+ddot(n,w,1,s,1)
while(gap > eps && nit(1)<maxit) {
nit(1)=nit(1)+1
do i = 1,n{
d(i) = one/(z(i)/x(i) + w(i)/s(i))
ds(i)=z(i)-w(i)
dz(i)=d(i)*ds(i)
}
call dcopy(p,b,1,dy,1)#save rhs
call dgemv('N',p,n,mone,a,p,x,1,one,dy,1)
call dgemv('N',p,n,one,a,p,dz,1,one,dy,1)
call dcopy(p,dy,1,rhs,1)#save rhs
call stepy(n,p,a,d,dy,ada,info)
if(info != 0) return
call dgemv('T',p,n,one,a,p,dy,1,mone,ds,1) #ds -> A'dy - ds
deltap=big
deltad=big
do i=1,n{
dx(i)=d(i)*ds(i)
ds(i)=-dx(i)
dz(i)=-z(i)*(dx(i)/x(i) + one)
dw(i)=-w(i)*(ds(i)/s(i) + one)
if(dx(i)<0)deltap=dmin1(deltap,-x(i)/dx(i))
if(ds(i)<0)deltap=dmin1(deltap,-s(i)/ds(i))
if(dz(i)<0)deltad=dmin1(deltad,-z(i)/dz(i))
if(dw(i)<0)deltad=dmin1(deltad,-w(i)/dw(i))
}
deltap=dmin1(beta*deltap,one)
deltad=dmin1(beta*deltad,one)
if(min(deltap,deltad) < one){
nit(2)=nit(2)+1
# Update mu
mu = ddot(n,x,1,z,1)+ddot(n,s,1,w,1)
g = mu + deltap*ddot(n,dx,1,z,1)+
deltad*ddot(n,dz,1,x,1) +
deltap*deltad*ddot(n,dz,1,dx,1)+
deltap*ddot(n,ds,1,w,1)+
deltad*ddot(n,dw,1,s,1) +
deltap*deltad*ddot(n,ds,1,dw,1)
mu = mu * ((g/mu)**3) /dfloat(2*n)
# Compute modified step
do i=1,n{
dr(i)=d(i)*(mu*(1/s(i)-1/x(i))+
dx(i)*dz(i)/x(i)-ds(i)*dw(i)/s(i))
}
call dswap(p,rhs,1,dy,1)
call dgemv('N',p,n,one,a,p,dr,1,one,dy,1)# new rhs
call dpotrs('U',p,1,ada,p,dy,p,info)# backsolve for dy
call dgemv('T',p,n,one,a,p,dy,1,zero,u,1)#ds=A'ddy
deltap=big
deltad=big
do i=1,n{
dxdz = dx(i)*dz(i)
dsdw = ds(i)*dw(i)
dx(i)= d(i)*(u(i)-z(i)+w(i))-dr(i)
ds(i)= -dx(i)
dz(i)= -z(i)+(mu - z(i)*dx(i) - dxdz)/x(i)
dw(i)= -w(i)+(mu - w(i)*ds(i) - dsdw)/s(i)
if(dx(i)<0)deltap=dmin1(deltap,-x(i)/dx(i))
if(ds(i)<0)deltap=dmin1(deltap,-s(i)/ds(i))
if(dz(i)<0)deltad=dmin1(deltad,-z(i)/dz(i))
if(dw(i)<0)deltad=dmin1(deltad,-w(i)/dw(i))
}
deltap=dmin1(beta*deltap,one)
deltad=dmin1(beta*deltad,one)
}
call daxpy(n,deltap,dx,1,x,1)
call daxpy(n,deltap,ds,1,s,1)
call daxpy(p,deltad,dy,1,y,1)
call daxpy(n,deltad,dz,1,z,1)
call daxpy(n,deltad,dw,1,w,1)
gap = ddot(n,z,1,x,1)+ddot(n,w,1,s,1)
}
# return residuals in the vector x
call daxpy(n,mone,w,1,z,1)
call dswap(n,z,1,x,1)
return
end
subroutine stepy(n,p,a,d,b,ada,info)
integer n,p,pp,i,info
double precision a(p,n),b(p),d(n),ada(p,p),zero
parameter( zero = 0.0d0)
# Solve the linear system ada'x=b by Choleski -- d is diagonal
# Note that a isn't altered, and on output ada returns the upper
# triangle Choleski factor, which can be reused, eg with blas dtrtrs
pp=p*p
do j=1,p
do k=1,p
ada(j,k)=zero
do i=1,n
call dsyr('U',p,d(i),a(1,i),1,ada,p)
call dposv('U',p,1,ada,p,b,p,info)
return
end
Respuestas:
El ejemplo de código que enumeró es Ratfor (Rational Fortran).
https://en.wikipedia.org/wiki/Ratfor
El archivo original se cita como Ratfor en esta página web.
http://www.econ.uiuc.edu/~roger/research/rqn/rqn.html
fuente