Tengo una ecuación integral de la forma de donde F n es la cdf empírica y g es una función. Tengo un mapeo de contracción y por eso estoy tratando de resolver la ecuación integral utilizando la secuencia del teorema del punto fijo de Banach.
Sin embargo, esta se ejecuta muy lentamente en I y estoy pensando que es porque estoy integrando el uso de la función suma () para una y otra vez.
¿Hay una forma más rápida de integrar usando la distribución empírica con una función como integrar ()?
r
numerical-integration
Novato
fuente
fuente
Respuestas:
Definición de la función de distribución empírica F n ( t ) = 1
integrate()
R
debería ser súper rápido porque está vectorizado.
fuente