¿Qué es un proceso estacionario de segundo orden?

12

Me preguntaba cómo se define su "proceso estacionario de segundo orden" en la Introducción a las series de tiempo y pronósticos de Brockwell y Davis :

La clase de modelos de series temporales lineales, que incluye la clase de modelos de media móvil autorregresiva (ARMA), proporciona un marco general para estudiar procesos estacionarios. De hecho, cada proceso estacionario de segundo orden es un proceso lineal o puede transformarse en un proceso lineal restando un componente determinista. Este resultado se conoce como descomposición de Wold y se analiza en la Sección 2.6.

En Wikipedia ,

El caso de la estacionariedad de segundo orden surge cuando los requisitos de estacionariedad estricta solo se aplican a pares de variables aleatorias de la serie temporal.

Pero creo que el libro tiene una definición diferente de la de Wikipedia, porque el libro usa la estacionariedad corta para la estacionariedad de sentido amplio, mientras que Wikipedia usa la estacionaria corta para la estacionaria estricta.

¡Gracias y saludos!

Tim
fuente
Esta es una buena explicación con el ejemplo: stats.stackexchange.com/questions/1430/… Espero que esto ayude, AO
AOGSTA

Respuestas:

14

Puede haber cierta confusión de términos aquí dependiendo de si se considera que el adjetivo de segundo orden modifica el proceso estacionario o aleatorio (¡o ambos!). Para algunas personas

  • Un segundo orden proceso aleatorio es uno para el que es finito (de hecho limitada) para todo . Para nosotros, los ingenieros eléctricos que aplicamos (o aplicamos ) modelos de procesos aleatorios al estudiar señales eléctricas, es una medida de la potencia promedio entregada en el tiempo por una señal estocástica, por lo que todas las señales físicamente observables son modelado como procesos de segundo orden. Tenga en cuenta que la estacionariedad no se ha mencionado en absoluto y estos procesos de segundo orden pueden o no ser estacionarios.{Xt:tT}E[Xt2]tTE[Xt2]t

  • Un proceso aleatorio que es estacionaria a fin , que podemos (pero tal vez no deberíamos) llamar a un segundo orden proceso aleatorio estacionario siempre estamos de acuerdo en que de segundo orden modifica estacionaria y no proceso aleatorio , es aquel para el cual es una conjunto de números reales que se cierra bajo la suma, y ​​la distribución conjunta de las variables aleatorias y (donde depende de pero no de . Como muestra el enlace proporcionado por AO, un proceso aleatorio estacionario para ordenar2TXtXt+τt,τT)τt2No es necesario que sea estrictamente estacionario. Este proceso tampoco es necesariamente estacionario en sentido amplio porque no hay garantía de que sea ​​finito: considere, por ejemplo, un proceso estrictamente estacionario en el que los son variables aleatorias independientes de Cauchy.E[Xt2]Xt

  • Un proceso aleatorio de segundo orden (que significa potencia finita como en el primer elemento anterior) que es estacionario al menos en el orden es de sentido amplio estacionario.2

Bien, esa es la perspectiva de un conjunto diferente de usuarios de la teoría de procesos aleatorios. Para obtener más detalles, consulte, por ejemplo, esta respuesta mía en dsp.SE.

Dilip Sarwate
fuente
¿Por qué finito es un requisito de sentido amplio estacionario pero no estacionario de segundo orden? ¿Puede proporcionar una fuente para esta restricción? E[Xt2]
Eric
1
Estacionario al orden 2 no dice nada sobre los momentos de las variables aleatorias, solo sobre las distribuciones, mientras que la estacionariedad de sentido amplio se trata de los momentos y no requiere ninguna propiedad especial de las distribuciones. La definición más comúnmente aceptada de estacionariedad de sentido amplio incluye el requisito del segundo momento finito, pero si no le gusta, puede descartar el requisito e intentar persuadir a otros para que acepten su definición más amplia como la definición comúnmente aceptada.
Dilip Sarwate
Pregunto porque el comentario de Metrics a continuación no está de acuerdo con usted aquí. ¿Entonces su definición de un proceso WSS es un subconjunto de "procesos aleatorios de orden 2 que son estacionarios al orden 2"?
Eric
2
No, un proceso de segundo orden (también conocido como segundo momento finito) que es estacionario al orden 2 (o más) es un proceso WSS pero la estacionariedad al orden 2 no es necesario para que un proceso finito de segundo momento sea un proceso WSS. En otras palabras, mi definición de procesos WSS incluye procesos fijos a pedido-2 que tienen un segundo momento finito.
Dilip Sarwate
1

El estacionario de segundo orden es un estacionario débil o estacionario de covarianza. Ver el siguiente extracto de Time Series Analysis, J. Hamilton (1994) p. 108

ingrese la descripción de la imagen aquí

Métrica
fuente
¡Gracias! ¿La estacionariedad de segundo orden es igual a la estacionaria de sentido amplio?
Tim
Sí @Tim. Puedes verificar eso en wiki también.
Métricas
Sorprendente ... Wiki tiene definiciones separadas para débil y segundo orden, pero no hay referencia para el segundo orden estacionario.
Métricas
-1

Supongo que es lo mismo que "débilmente estacionario". Eso significa que todos (para todos , y cualquier tienen la misma matriz de expectativa y covarianza, pero no necesariamente la misma distribución.k l )(xk,,xkl)kl)

arrastrar
fuente