El entrenamiento después de 15 épocas en el conjunto de datos CIFAR-10 parece hacer que la pérdida de validación ya no disminuya, permaneciendo alrededor de 1.4 (con una precisión de validación del 60%). He barajado el conjunto de entrenamiento, dividido entre 255 e importado como float32. He probado numerosas arquitecturas, con y sin abandono en las capas Conv2D y nada parece funcionar. La misma arquitectura logra una precisión del 99.7% en los conjuntos de prueba para MNIST. Por favor vea la arquitectura a continuación:
(Nota: he intentado aumentar el abandono y aumentar / disminuir la tasa de aprendizaje del optimizador Adam para evitar el sobreajuste, todo esto es evitar el sobreajuste, pero ahora tanto el entrenamiento como el conjunto de pruebas tienen una precisión baja similar alrededor del 60%).
with tf.device('/gpu:0'):
tf.placeholder(tf.float32, shape=(None, 20, 64))
#placeholder initialized (pick /cpu:0 or /gpu:0)
seed = 6
np.random.seed(seed)
modelnn = Sequential()
neurons = x_train_reduced.shape[1:]
modelnn.add(Convolution2D(32, 3, 3, input_shape=neurons, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(32, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
#modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
#modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
#modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Flatten())
#modelnn.add(Dropout(0.5))
modelnn.add(Dense(1024, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(Dropout(0.5))
modelnn.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(Dropout(0.5))
modelnn.add(Dense(10, activation='softmax'))
modelnn.compile(loss='categorical_crossentropy', optimizer=optimizer_input, metrics=['accuracy'])
y_train = to_categorical(y_train)
modelnn.fit(x_train_reduced, y_train, nb_epoch=nb_epoch_count, shuffle=True, batch_size=bsize,
validation_split=0.1)
Resultados:
44100/44100 [==============================] - 22s - loss: 2.1453 - acc: 0.2010 - val_loss: 1.9812 - val_acc: 0.2959
Epoch 2/50
44100/44100 [==============================] - 24s - loss: 1.9486 - acc: 0.3089 - val_loss: 1.8685 - val_acc: 0.3567
Epoch 3/50
44100/44100 [==============================] - 18s - loss: 1.8599 - acc: 0.3575 - val_loss: 1.7822 - val_acc: 0.3982
Epoch 4/50
44100/44100 [==============================] - 18s - loss: 1.7925 - acc: 0.3933 - val_loss: 1.7272 - val_acc: 0.4229
Epoch 5/50
44100/44100 [==============================] - 18s - loss: 1.7425 - acc: 0.4195 - val_loss: 1.6806 - val_acc: 0.4459
Epoch 6/50
44100/44100 [==============================] - 18s - loss: 1.6998 - acc: 0.4440 - val_loss: 1.6436 - val_acc: 0.4682
Epoch 7/50
44100/44100 [==============================] - 18s - loss: 1.6636 - acc: 0.4603 - val_loss: 1.6156 - val_acc: 0.4837
Epoch 8/50
44100/44100 [==============================] - 18s - loss: 1.6333 - acc: 0.4781 - val_loss: 1.6351 - val_acc: 0.4776
Epoch 9/50
44100/44100 [==============================] - 18s - loss: 1.6086 - acc: 0.4898 - val_loss: 1.5732 - val_acc: 0.5063
Epoch 10/50
44100/44100 [==============================] - 18s - loss: 1.5776 - acc: 0.5065 - val_loss: 1.5411 - val_acc: 0.5227
Epoch 11/50
44100/44100 [==============================] - 18s - loss: 1.5585 - acc: 0.5145 - val_loss: 1.5485 - val_acc: 0.5212
Epoch 12/50
44100/44100 [==============================] - 18s - loss: 1.5321 - acc: 0.5288 - val_loss: 1.5354 - val_acc: 0.5316
Epoch 13/50
44100/44100 [==============================] - 18s - loss: 1.5082 - acc: 0.5402 - val_loss: 1.5022 - val_acc: 0.5427
Epoch 14/50
44100/44100 [==============================] - 18s - loss: 1.4945 - acc: 0.5438 - val_loss: 1.4916 - val_acc: 0.5490
Epoch 15/50
44100/44100 [==============================] - 192s - loss: 1.4762 - acc: 0.5535 - val_loss: 1.5159 - val_acc: 0.5394
Epoch 16/50
44100/44100 [==============================] - 18s - loss: 1.4577 - acc: 0.5620 - val_loss: 1.5389 - val_acc: 0.5257
Epoch 17/50
44100/44100 [==============================] - 18s - loss: 1.4425 - acc: 0.5671 - val_loss: 1.4590 - val_acc: 0.5667
Epoch 18/50
44100/44100 [==============================] - 18s - loss: 1.4258 - acc: 0.5766 - val_loss: 1.4552 - val_acc: 0.5763
Epoch 19/50
44100/44100 [==============================] - 18s - loss: 1.4113 - acc: 0.5805 - val_loss: 1.4439 - val_acc: 0.5767
Epoch 20/50
44100/44100 [==============================] - 18s - loss: 1.3971 - acc: 0.5879 - val_loss: 1.4473 - val_acc: 0.5769
Epoch 21/50
44100/44100 [==============================] - 18s - loss: 1.3850 - acc: 0.5919 - val_loss: 1.4251 - val_acc: 0.5871
Epoch 22/50
44100/44100 [==============================] - 18s - loss: 1.3668 - acc: 0.6006 - val_loss: 1.4203 - val_acc: 0.5910
Epoch 23/50
44100/44100 [==============================] - 18s - loss: 1.3549 - acc: 0.6051 - val_loss: 1.4207 - val_acc: 0.5939
Epoch 24/50
44100/44100 [==============================] - 18s - loss: 1.3373 - acc: 0.6111 - val_loss: 1.4516 - val_acc: 0.5784
Epoch 25/50
44100/44100 [==============================] - 18s - loss: 1.3285 - acc: 0.6149 - val_loss: 1.4146 - val_acc: 0.5922
Epoch 26/50
44100/44100 [==============================] - 18s - loss: 1.3134 - acc: 0.6205 - val_loss: 1.4090 - val_acc: 0.6024
Epoch 27/50
44100/44100 [==============================] - 18s - loss: 1.3043 - acc: 0.6239 - val_loss: 1.4307 - val_acc: 0.5959
Epoch 28/50
44100/44100 [==============================] - 18s - loss: 1.2862 - acc: 0.6297 - val_loss: 1.4241 - val_acc: 0.5978
Epoch 29/50
44100/44100 [==============================] - 18s - loss: 1.2706 - acc: 0.6340 - val_loss: 1.4046 - val_acc: 0.6067
Epoch 30/50
44100/44100 [==============================] - 18s - loss: 1.2634 - acc: 0.6405 - val_loss: 1.4120 - val_acc: 0.6037
Epoch 31/50
44100/44100 [==============================] - 18s - loss: 1.2473 - acc: 0.6446 - val_loss: 1.4067 - val_acc: 0.6045
Epoch 32/50
44100/44100 [==============================] - 18s - loss: 1.2411 - acc: 0.6471 - val_loss: 1.4083 - val_acc: 0.6098
Epoch 33/50
44100/44100 [==============================] - 18s - loss: 1.2241 - acc: 0.6498 - val_loss: 1.4091 - val_acc: 0.6076
Epoch 34/50
44100/44100 [==============================] - 18s - loss: 1.2121 - acc: 0.6541 - val_loss: 1.4209 - val_acc: 0.6127
Epoch 35/50
44100/44100 [==============================] - 18s - loss: 1.1995 - acc: 0.6582 - val_loss: 1.4230 - val_acc: 0.6131
Epoch 36/50
44100/44100 [==============================] - 18s - loss: 1.1884 - acc: 0.6622 - val_loss: 1.4024 - val_acc: 0.6124
Epoch 37/50
44100/44100 [==============================] - 18s - loss: 1.1778 - acc: 0.6657 - val_loss: 1.4328 - val_acc: 0.6080
Epoch 38/50
44100/44100 [==============================] - 18s - loss: 1.1612 - acc: 0.6683 - val_loss: 1.4246 - val_acc: 0.6159
Epoch 39/50
44100/44100 [==============================] - 18s - loss: 1.1466 - acc: 0.6735 - val_loss: 1.4282 - val_acc: 0.6122
Epoch 40/50
44100/44100 [==============================] - 18s - loss: 1.1325 - acc: 0.6783 - val_loss: 1.4311 - val_acc: 0.6157
Epoch 41/50
44100/44100 [==============================] - 18s - loss: 1.1213 - acc: 0.6806 - val_loss: 1.4647 - val_acc: 0.6047
Epoch 42/50
44100/44100 [==============================] - 18s - loss: 1.1064 - acc: 0.6842 - val_loss: 1.4631 - val_acc: 0.6047
Epoch 43/50
44100/44100 [==============================] - 18s - loss: 1.0967 - acc: 0.6870 - val_loss: 1.4535 - val_acc: 0.6106
Epoch 44/50
44100/44100 [==============================] - 18s - loss: 1.0822 - acc: 0.6893 - val_loss: 1.4532 - val_acc: 0.6149
Epoch 45/50
44100/44100 [==============================] - 18s - loss: 1.0659 - acc: 0.6941 - val_loss: 1.4691 - val_acc: 0.6108
Epoch 46/50
44100/44100 [==============================] - 18s - loss: 1.0610 - acc: 0.6956 - val_loss: 1.4751 - val_acc: 0.6106
Epoch 47/50
44100/44100 [==============================] - 18s - loss: 1.0397 - acc: 0.6981 - val_loss: 1.4857 - val_acc: 0.6041
Epoch 48/50
44100/44100 [==============================] - 18s - loss: 1.0208 - acc: 0.7039 - val_loss: 1.4901 - val_acc: 0.6106
Epoch 49/50
44100/44100 [==============================] - 18s - loss: 1.0187 - acc: 0.7036 - val_loss: 1.4994 - val_acc: 0.6106
Epoch 50/50
44100/44100 [==============================] - 18s - loss: 1.0024 - acc: 0.7070 - val_loss: 1.5078 - val_acc: 0.6039
Time: 1109.7512991428375
Neural Network now trained from dimensions (49000, 3, 32, 32)
Actualización: Pruebas adicionales que incluyen BatchNormalization con y sin MaxNorm -
Nueva arquitectura:
modelnn.add(Convolution2D(32, 3, 3, input_shape=neurons, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(32, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(64, 3, 3, activation='relu', border_mode='same'))
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.2))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(Convolution2D(128, 3, 3, activation='relu', border_mode='same'))
modelnn.add(BatchNormalization())
modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Dropout(0.2))
# modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
# modelnn.add(Convolution2D(256, 3, 3, activation='relu', border_mode='same'))
# modelnn.add(MaxPooling2D(pool_size=(2, 2)))
modelnn.add(Flatten())
modelnn.add(Dense(1024, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.5))
modelnn.add(Dense(512, activation='relu', W_constraint=maxnorm(3)))
modelnn.add(BatchNormalization())
modelnn.add(Dropout(0.5))
modelnn.add(Dense(10, activation='softmax'))
fuente
Al observar sus valores de pérdida y precisión dentro y fuera de la muestra, su modelo actualmente no está equipado, pero está mejorando de forma monótona. En otras palabras, parece que ejecutar esto durante más épocas daría como resultado un mayor rendimiento predictivo / menos pérdida de entropía.
Está utilizando una arquitectura altamente regularizada (capas de abandono), que no está mal. Sin embargo, tampoco es sorprendente que el entrenamiento tome mucho más tiempo que sin ninguna regularización. Debido a las capas de abandono, es poco probable que se sobreajuste (sustancialmente).
Cosas que puedes intentar para acelerar el aprendizaje:
yo. ajustar la tasa de aprendizaje: por ejemplo, comenzar con una pequeña, subirla por la mitad y hacia el final bajarla nuevamente.
ii. agregue batchnormalisation : en la arquitectura anterior, puede incluir la norma de lote tanto en sus bloques convolucionales como en capas densas. Por lo general, la capa de la norma de lote se agrega después de la activación no lineal pero antes del abandono. No estoy seguro de qué tan bien juega la norma de lotes con maxnorm. Para sus capas densas, probaría lote-norma + dropuout con / sin maxnorm. Tengo la sensación de que no necesita maxnorm si aplica la normalización por lotes.
iii) aumentar el tamaño del lote: no estoy seguro de cuál es su tamaño de lote y si posee una GPU. Si tiene una GPU, probablemente debería intentar maximizar el tamaño de su lote en multiplicativos de 32.
Finalmente, para garantizar que sus datos sean 'aprendebles' / no estén corruptos (por ejemplo, no ha aplicado involuntariamente una transformación para deformarlos), descartaría toda la regularización de su arquitectura, ejecutaría el entrenamiento y vería que puede adaptarse al conjunto de entrenamiento . Si puede aprender datos de entrenamiento con éxito, el resto es un ejercicio de generalización. Si no puede adaptarse demasiado a los datos de entrenamiento incluso sin regularización, lo más probable es que su modelo necesite más capacidad (arquitectura más profunda y más amplia).
fuente
Intenté esto hoy y pude alcanzar casi el 75-80% en precisión de prueba.
El número total de parámetros utilizados fue:
183,242
Puede hacerlo mejor agregando quizás unas pocas capas más, pero no necesita ser excesivo. Las redes más complejas no siempre resultan en mejores resultados.
Sugerencias
Mi sugerencia para usted es que mantenga su arquitectura simple. Sigue la navaja de Occam , simple es mejor.
Escala tus datos
No uses una semilla aleatoria
Use un optimizador apropiado; Usé Adadelta como es de Keras.
Las CNN no necesitan ser enrevesadas; mantenlo simple
Las redes más delgadas y profundas a veces funcionan mejor que las más anchas
Usar regularización (por ejemplo, abandono)
A continuación se muestra mi código (usando Keras)
fuente