Tengo una pregunta sobre el uso de una variable de agrupación en un modelo no lineal. Dado que la función nls () no permite variables de factor, he estado luchando por descubrir si uno puede probar el efecto de un factor en el ajuste del modelo. He incluido un ejemplo a continuación donde deseo ajustar un modelo de crecimiento "estacionalizado de von Bertalanffy" a diferentes tratamientos de crecimiento (más comúnmente aplicado al crecimiento de peces). Me gustaría probar el efecto del lago donde crecieron los peces y la comida que se les dio (solo un ejemplo artificial). Estoy familiarizado con una solución alternativa a este problema: la aplicación de una prueba F que compara modelos ajustados a datos agrupados frente a ajustes separados como se describe por Chen et al. (1992) (ARSS - "Análisis de la suma residual de cuadrados"). En otras palabras, para el ejemplo a continuación,
Me imagino que hay una manera más simple de hacer esto en R usando nlme (), pero estoy teniendo problemas. En primer lugar, al usar una variable de agrupación, los grados de libertad son más altos que los que obtengo con mi ajuste de modelos separados. En segundo lugar, no puedo anidar las variables de agrupación: no veo dónde está mi problema. Cualquier ayuda usando nlme u otros métodos es muy apreciada. A continuación hay un código para mi ejemplo artificial:
###seasonalized von Bertalanffy growth model
soVBGF <- function(S.inf, k, age, age.0, age.s, c){
S.inf * (1-exp(-k*((age-age.0)+(c*sin(2*pi*(age-age.s))/2*pi)-(c*sin(2*pi*(age.0-age.s))/2*pi))))
}
###Make artificial data
food <- c("corn", "corn", "wheat", "wheat")
lake <- c("king", "queen", "king", "queen")
#cornking, cornqueen, wheatking, wheatqueen
S.inf <- c(140, 140, 130, 130)
k <- c(0.5, 0.6, 0.8, 0.9)
age.0 <- c(-0.1, -0.05, -0.12, -0.052)
age.s <- c(0.5, 0.5, 0.5, 0.5)
cs <- c(0.05, 0.1, 0.05, 0.1)
PARS <- data.frame(food=food, lake=lake, S.inf=S.inf, k=k, age.0=age.0, age.s=age.s, c=cs)
#make data
set.seed(3)
db <- c()
PCH <- NaN*seq(4)
COL <- NaN*seq(4)
for(i in seq(4)){
age <- runif(min=0.2, max=5, 100)
age <- age[order(age)]
size <- soVBGF(PARS$S.inf[i], PARS$k[i], age, PARS$age.0[i], PARS$age.s[i], PARS$c[i]) + rnorm(length(age), sd=3)
PCH[i] <- c(1,2)[which(levels(PARS$food) == PARS$food[i])]
COL[i] <- c(2,3)[which(levels(PARS$lake) == PARS$lake[i])]
db <- rbind(db, data.frame(age=age, size=size, food=PARS$food[i], lake=PARS$lake[i], pch=PCH[i], col=COL[i]))
}
#visualize data
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
###fit growth model
library(nlme)
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
#fit to pooled data ("small model")
fit0 <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values
)
summary(fit0)
#fit to each lake separatly ("large model")
fit.king <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="king"
)
summary(fit.king)
fit.queen <- nls(size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
start=starting.values,
subset=db$lake=="queen"
)
summary(fit.queen)
#analysis of residual sum of squares (F-test)
resid.small <- resid(fit0)
resid.big <- c(resid(fit.king),resid(fit.queen))
df.small <- summary(fit0)$df
df.big <- summary(fit.king)$df+summary(fit.queen)$df
F.value <- ((sum(resid.small^2)-sum(resid.big^2))/(df.big[1]-df.small[1])) / (sum(resid.big^2)/(df.big[2]))
P.value <- pf(F.value , (df.big[1]-df.small[1]), df.big[2], lower.tail = FALSE)
F.value; P.value
###plot models
plot(db$size ~ db$age, col=db$col, pch=db$pch)
legend("bottomright", legend=paste(PARS$food, PARS$lake), col=COL, pch=PCH)
legend("topleft", legend=c("soVGBF pooled", "soVGBF king", "soVGBF queen"), col=c(1,2,3), lwd=2)
#plot "small" model (pooled data)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100))
pred <- predict(fit0, tmp)
lines(tmp$age, pred, col=1, lwd=2)
#plot "large" model (seperate fits)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="king")
pred <- predict(fit.king, tmp)
lines(tmp$age, pred, col=2, lwd=2)
tmp <- data.frame(age=seq(min(db$age), max(db$age),,100), lake="queen")
pred <- predict(fit.queen, tmp)
lines(tmp$age, pred, col=3, lwd=2)
###Can this be done in one step using a grouping variable?
#with "lake" as grouping variable
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit1 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake,
start=starting.values
)
summary(fit1)
#similar residuals to the seperatly fitted models
sum(resid(fit.king)^2+resid(fit.queen)^2)
sum(resid(fit1)^2)
#but different degrees of freedom? (10 vs. 21?)
summary(fit.king)$df+summary(fit.queen)$df
AIC(fit1, fit0)
###I would also like to nest my grouping factors. This doesn't work...
#with "lake" and "food" as grouping variables
starting.values <- c(S.inf=140, k=0.5, c=0.1, age.0=0, age.s=0)
fit2 <- nlme(model = size ~ soVBGF(S.inf, k, age, age.0, age.s, c),
data=db,
fixed = S.inf + k + c + age.0 + age.s ~ 1,
group = ~ lake/food,
start=starting.values
)
Referencia: Chen, Y., Jackson, DA y Harvey, HH, 1992. Una comparación de von Bertalanffy y las funciones polinómicas en el modelado de datos de crecimiento de peces. 49, 6: 1228-1235.
fuente
Descubrí que es posible codificar variables categóricas con nls (), simplemente multiplicando los vectores verdadero / falso en su ecuación. Ejemplo:
fuente