También estoy interesado en esta pregunta y quería agregar algunos experimentos para comprender mejor CalibratedClassifierCV (CCCV).
Como ya se ha dicho, hay dos formas de usarlo.
#Method 1, train classifier within CCCV
model = CalibratedClassifierCV(my_clf)
model.fit(X_train_val, y_train_val)
#Method 2, train classifier and then use CCCV on DISJOINT set
my_clf.fit(X_train, y_train)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_val, y_val)
Alternativamente, podríamos probar el segundo método pero solo calibrar con los mismos datos que ajustamos.
#Method 2 Non disjoint, train classifier on set, then use CCCV on SAME set used for training
my_clf.fit(X_train_val, y_train_val)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_train_val, y_train_val)
Aunque los documentos advierten sobre el uso de un conjunto disjunto, esto podría ser útil porque le permite luego inspeccionar my_clf
(por ejemplo, para ver los coef_
que no están disponibles en el objeto CalibratedClassifierCV). (¿Alguien sabe cómo obtener esto de los clasificadores calibrados, por ejemplo, hay tres de ellos, por lo que promediaría los coeficientes?).
Decidí comparar estos 3 métodos en términos de su calibración en un conjunto de prueba completamente extendido.
Aquí hay un conjunto de datos:
X, y = datasets.make_classification(n_samples=500, n_features=200,
n_informative=10, n_redundant=10,
#random_state=42,
n_clusters_per_class=1, weights = [0.8,0.2])
Agregué un desequilibrio de clase y solo proporcioné 500 muestras para hacer de este un problema difícil.
Realizo 100 pruebas, cada vez que pruebo cada método y trazo su curva de calibración.
Gráficos de caja de los puntajes de Brier en todos los ensayos:
Aumentar el número de muestras a 10,000:
Si cambiamos el clasificador a Naive Bayes, volviendo a 500 muestras:
Esto parece no ser suficientes muestras para calibrar. Incremento de muestras a 10,000
Código completo
print(__doc__)
# Based on code by Alexandre Gramfort <[email protected]>
# Jan Hendrik Metzen <[email protected]>
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import brier_score_loss
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.model_selection import train_test_split
def plot_calibration_curve(clf, name, ax, X_test, y_test, title):
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):
prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function
prob_pos = clf.decision_function(X_test)
prob_pos = \
(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10, normalize=False)
ax.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.3f)" % (name, clf_score), alpha=0.5, color='k', marker=None)
ax.set_ylabel("Fraction of positives")
ax.set_ylim([-0.05, 1.05])
ax.set_title(title)
ax.set_xlabel("Mean predicted value")
plt.tight_layout()
return clf_score
fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, figsize=(6,12))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated",)
ax2.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
ax3.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
scores = {'Method 1':[],'Method 2':[],'Method 3':[]}
fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, figsize=(6,12))
ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated",)
ax2.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
ax3.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
scores = {'Method 1':[],'Method 2':[],'Method 3':[]}
for i in range(0,100):
X, y = datasets.make_classification(n_samples=10000, n_features=200,
n_informative=10, n_redundant=10,
#random_state=42,
n_clusters_per_class=1, weights = [0.8,0.2])
X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size=0.80,
#random_state=42
)
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, test_size=0.80,
#random_state=42
)
#my_clf = GaussianNB()
my_clf = LogisticRegression()
#Method 1, train classifier within CCCV
model = CalibratedClassifierCV(my_clf)
model.fit(X_train_val, y_train_val)
r = plot_calibration_curve(model, "all_cal", ax1, X_test, y_test, "Method 1")
scores['Method 1'].append(r)
#Method 2, train classifier and then use CCCV on DISJOINT set
my_clf.fit(X_train, y_train)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_val, y_val)
r = plot_calibration_curve(model, "all_cal", ax2, X_test, y_test, "Method 2")
scores['Method 2'].append(r)
#Method 3, train classifier on set, then use CCCV on SAME set used for training
my_clf.fit(X_train_val, y_train_val)
model = CalibratedClassifierCV(my_clf, cv='prefit')
model.fit(X_train_val, y_train_val)
r = plot_calibration_curve(model, "all_cal", ax3, X_test, y_test, "Method 2 non Dis")
scores['Method 3'].append(r)
import pandas
b = pandas.DataFrame(scores).boxplot()
plt.suptitle('Brier score')
Por lo tanto, los resultados del puntaje de Brier no son concluyentes, pero según las curvas parece ser mejor usar el segundo método.