He estado leyendo Wagenmakers (2007) Una solución práctica al problema generalizado de los valores de p . Me intriga la conversión de los valores BIC en factores y probabilidades de Bayes. Sin embargo, hasta ahora no tengo una buena idea de qué es exactamente una información de unidad anterior . Le agradecería una explicación con imágenes, o el código R para generar imágenes, de este particular antes.
fuente
La información de la unidad anterior se basa en la siguiente interpretación de conjugación:
Preparar
Interpretación
Por lo tanto, después de observar los datos , tenemos un for posterior para que se concentra en una combinación convexa de la observación y lo que se postuló antes de que se observaran los datos, que es, . Además, la varianza posterior está dada por , por lo tanto, como si tuviéramos observaciones en lugar de μ ˉ x a σ 2X¯=x¯ μ x¯ a n+1n ˉ x aσ2n+1 n+1 n comparó la distribución muestral de la media muestral. Tenga en cuenta que una distribución de muestreo no es lo mismo que una distribución posterior. Sin embargo, el tipo posterior se parece, permitiendo que los datos hablen por sí mismos. Por lo tanto, con la información de la unidad anterior, uno obtiene un posterior que se concentra principalmente en los datos, , y se reduce a la información previa como una penalización única.x¯ a
Kass y Wasserman, además, mostraron que la selección del modelo versus con lo anterior anteriormente puede aproximarse bien con el criterio de Schwartz (básicamente, BIC / 2) cuando es grande.M 1 : μ ∈ R nM0:μ=a M1:μ∈R n
Algunas observaciones:
Referencias
fuente