Configuré una búsqueda de cuadrícula para un montón de parámetros. Estoy tratando de encontrar los mejores parámetros para una red neuronal Keras que hace una clasificación binaria. La salida es 1 o 0. Hay alrededor de 200 características. Cuando hice una búsqueda en la cuadrícula, obtuve un montón de modelos y sus parámetros. El mejor modelo tenía estos parámetros:
Epochs : 20
Batch Size : 10
First Activation : sigmoid
Learning Rate : 1
First Init : uniform
y los resultados para ese modelo fueron:
loss acc val_loss val_acc
1 0.477424 0.768542 0.719960 0.722550
2 0.444588 0.788861 0.708650 0.732130
3 0.435809 0.794336 0.695768 0.732682
4 0.427056 0.798784 0.684516 0.721137
5 0.420828 0.803048 0.703748 0.720707
6 0.418129 0.806206 0.730803 0.723717
7 0.417522 0.805206 0.778434 0.721936
8 0.415197 0.807549 0.802040 0.733849
9 0.412922 0.808865 0.823036 0.731761
10 0.410463 0.810654 0.839087 0.730410
11 0.407369 0.813892 0.831844 0.725252
12 0.404436 0.815760 0.835217 0.723102
13 0.401728 0.816287 0.845178 0.722488
14 0.399623 0.816471 0.842231 0.717514
15 0.395746 0.819498 0.847118 0.719541
16 0.393361 0.820366 0.858291 0.714873
17 0.390947 0.822025 0.850880 0.723348
18 0.388478 0.823341 0.858591 0.721014
19 0.387062 0.822735 0.862971 0.721936
20 0.383744 0.825762 0.880477 0.721322
Así que volví a probar ese modelo con más épocas (150 de ellas) y estos son los resultados que obtuve. No estoy seguro de por qué sucede esto, ¿es esto normal o qué estoy haciendo mal?
loss acc val_loss val_acc
1 0.476387 0.769279 0.728492 0.722550
2 0.442604 0.789941 0.701136 0.730472
3 0.431936 0.796915 0.676995 0.723655
4 0.426349 0.800258 0.728562 0.721997
5 0.421143 0.803653 0.739789 0.716900
6 0.416389 0.807575 0.720850 0.711373
7 0.413163 0.809154 0.751340 0.718128
8 0.409013 0.811418 0.780856 0.723409
9 0.405871 0.813576 0.789046 0.719295
10 0.402579 0.815524 0.804526 0.720278
11 0.400152 0.816813 0.811905 0.719541
12 0.400304 0.817261 0.787449 0.713154
13 0.397917 0.817945 0.804222 0.721567
14 0.395266 0.819524 0.801722 0.723348
15 0.393957 0.820156 0.793889 0.719049
16 0.391780 0.821103 0.794179 0.721199
17 0.390206 0.822393 0.806803 0.722611
18 0.388075 0.823604 0.817850 0.723901
19 0.385985 0.824762 0.841883 0.722058
20 0.383762 0.826867 0.857071 0.720830
21 0.381493 0.827947 0.864432 0.718005
22 0.379520 0.829210 0.872835 0.720400
23 0.377488 0.830526 0.879962 0.721383
24 0.375619 0.830736 0.887850 0.723839
25 0.373684 0.832000 0.891267 0.724822
26 0.372023 0.832368 0.891562 0.724638
27 0.370155 0.833184 0.892528 0.724883
28 0.368511 0.834684 0.887061 0.724699
29 0.366522 0.835606 0.883541 0.724883
30 0.364500 0.836422 0.882823 0.724515
31 0.362612 0.836737 0.882611 0.722427
32 0.360742 0.837448 0.884282 0.720769
33 0.359093 0.838738 0.884339 0.719418
34 0.357436 0.839080 0.888006 0.716470
35 0.355723 0.840633 0.892658 0.713830
36 0.354305 0.840764 0.897303 0.710575
37 0.352758 0.841343 0.901147 0.709408
38 0.351414 0.842054 0.899546 0.707934
39 0.349619 0.843370 0.905133 0.704864
40 0.347993 0.844475 0.910400 0.701363
41 0.346402 0.845581 0.915086 0.699337
42 0.345014 0.845818 0.918697 0.697617
43 0.343708 0.846607 0.923413 0.695652
44 0.342335 0.847292 0.930816 0.693441
45 0.340745 0.848081 0.940737 0.689020
46 0.339623 0.848713 0.948633 0.685274
47 0.338846 0.849845 0.952492 0.683923
48 0.337724 0.850134 0.961147 0.683984
49 0.336247 0.850976 0.967792 0.683309
50 0.334444 0.851529 0.984107 0.680238
51 0.333086 0.852029 1.001179 0.678273
52 0.331756 0.853240 1.016130 0.674589
53 0.330738 0.854003 1.024875 0.673606
54 0.329548 0.854030 1.040597 0.670044
55 0.328813 0.855372 1.041871 0.668509
56 0.327120 0.855898 1.050617 0.668755
57 0.325962 0.855819 1.064525 0.666667
58 0.324602 0.856898 1.078078 0.662859
59 0.323560 0.857241 1.085016 0.661938
60 0.322243 0.858662 1.093114 0.661140
61 0.320680 0.858872 1.117269 0.656841
62 0.319267 0.860004 1.138825 0.654815
63 0.318132 0.860636 1.154959 0.653648
64 0.316956 0.861531 1.180216 0.649718
65 0.315543 0.862320 1.198216 0.648428
66 0.314405 0.862610 1.218663 0.647384
67 0.313501 0.863873 1.245123 0.644252
68 0.312513 0.864558 1.262998 0.643147
69 0.311567 0.865347 1.283213 0.641918
70 0.310069 0.866505 1.302089 0.640752
71 0.309087 0.866611 1.318972 0.641857
72 0.307767 0.867321 1.361531 0.638787
73 0.306750 0.866742 1.382162 0.638357
74 0.305760 0.867242 1.378694 0.641611
75 0.305289 0.867769 1.393187 0.642594
76 0.304089 0.868479 1.435852 0.635532
77 0.302472 0.869006 1.435019 0.639892
78 0.301118 0.869400 1.447060 0.639216
79 0.300629 0.870058 1.488730 0.634918
80 0.299364 0.870295 1.488376 0.636576
81 0.298380 0.870822 1.504260 0.634611
82 0.297253 0.871664 1.525655 0.634058
83 0.296760 0.871875 1.538717 0.632891
84 0.295502 0.872585 1.551178 0.633751
85 0.294569 0.872927 1.562323 0.633137
86 0.294780 0.872585 1.555390 0.629944
87 0.293796 0.872743 1.587800 0.627057
88 0.293029 0.873427 1.608010 0.627549
89 0.291822 0.874006 1.626047 0.627303
90 0.290643 0.874533 1.651658 0.626689
91 0.289920 0.875270 1.681202 0.623925
92 0.289661 0.875375 1.683188 0.626505
93 0.288103 0.876323 1.706517 0.625031
94 0.287917 0.876770 1.722031 0.624417
95 0.287020 0.877270 1.743283 0.624478
96 0.286750 0.877639 1.762506 0.624048
97 0.285712 0.877481 1.780433 0.622267
98 0.284635 0.878639 1.789917 0.622206
99 0.283627 0.879191 1.862468 0.616925
100 0.282214 0.879455 1.915643 0.612810
101 0.281749 0.879244 1.881444 0.615205
102 0.281710 0.879639 1.916390 0.614223
103 0.280293 0.880350 1.938470 0.612810
104 0.279233 0.881008 1.979127 0.609187
105 0.279204 0.880297 1.997384 0.606546
106 0.278264 0.881876 2.009851 0.607652
107 0.277511 0.882876 2.038530 0.606116
108 0.277521 0.881771 2.034664 0.604888
109 0.276264 0.882534 2.058179 0.604827
110 0.275230 0.883587 2.078912 0.604274
111 0.275147 0.883034 2.073272 0.603537
112 0.273717 0.883797 2.100150 0.600958
113 0.273372 0.883692 2.114416 0.601634
114 0.272626 0.883692 2.129778 0.601941
115 0.272001 0.883929 2.138462 0.601326
116 0.271344 0.884508 2.148771 0.602923
117 0.270134 0.884692 2.115114 0.604581
118 0.269494 0.885140 2.135719 0.603107
119 0.268803 0.885587 2.162380 0.601695
120 0.268593 0.886219 2.183793 0.599239
121 0.267141 0.886035 2.195810 0.600221
122 0.266565 0.886772 2.192426 0.600528
123 0.265715 0.886561 2.260088 0.596598
124 0.264788 0.887693 2.253029 0.597335
125 0.263643 0.887693 2.289285 0.597028
126 0.263612 0.887956 2.311600 0.596536
127 0.261996 0.888588 2.339754 0.595063
128 0.263069 0.887588 2.364881 0.594449
129 0.261684 0.889272 2.321568 0.596598
130 0.261304 0.889509 2.389324 0.591562
131 0.260336 0.889640 2.403542 0.593098
132 0.259131 0.890272 2.413964 0.592115
133 0.258756 0.890193 2.422454 0.591992
134 0.257794 0.891009 2.454598 0.591255
135 0.257187 0.891009 2.459366 0.590088
136 0.257249 0.891088 2.448625 0.591624
137 0.256344 0.891404 2.495104 0.589167
138 0.255590 0.891720 2.495032 0.589781
139 0.254596 0.892299 2.496050 0.589229
140 0.254308 0.892588 2.510471 0.589536
141 0.253694 0.892509 2.519580 0.589720
142 0.252973 0.893088 2.527464 0.590273
143 0.252714 0.893194 2.553902 0.589106
144 0.252190 0.893720 2.536494 0.590457
145 0.251870 0.893352 2.553102 0.588799
146 0.250437 0.893694 2.565141 0.589597
147 0.250066 0.894141 2.575599 0.588553
148 0.249596 0.894273 2.590722 0.588123
149 0.248569 0.894983 2.596031 0.588676
150 0.248096 0.895273 2.602810 0.588860
machine-learning
cross-validation
deep-learning
tensorflow
theano
usuario1367204
fuente
fuente
Respuestas:
(esto puede ser un duplicado) Parece que su modelo está demasiado ajustado, es solo memorizar los datos de entrenamiento. En general, un modelo que se ajusta demasiado puede mejorarse agregando más abandono, o capacitación y validación en un conjunto de datos más grande. Explique más sobre los datos / características y el modelo para obtener más ideas.
fuente
Quizás su conjunto de datos de entrenamiento tenga propiedades diferentes a su conjunto de datos de validación. Es como entrenar a una red para distinguir entre un pollo y un avión, pero luego le muestras una manzana. Cuanto más lo entrenes, mejor será distinguir a las gallinas de los aviones, pero también será peor cuando se muestre una manzana. Estoy en la misma situación y estoy pensando en usar una Red Adversaria Generativa para identificar si un punto de datos de validación es "ajeno" al conjunto de datos de entrenamiento o no
fuente