Suponiendo que por aprendizaje profundo quisieras decir redes neuronales más precisas: una red neuronal de alimentación directa totalmente conectada con solo funciones de activación lineal realizará una regresión lineal, independientemente de cuántas capas tenga. Una diferencia es que, con una red neuronal, normalmente se usa el descenso de gradiente, mientras que con la regresión lineal "normal" se usa la ecuación normal si es posible (cuando el número de características no es demasiado grande).
Ejemplo de una red neuronal de alimentación directa totalmente conectada sin capa oculta y que utiliza una función de activación lineal (es decir, la función de activación de identidad):
Si reemplaza la función de activación de la capa de salida con una función sigmoidea, la red neuronal realiza una regresión logística. Si reemplaza la función de activación de la capa de salida con una función softmax y agrega algunas unidades de salida, la red neuronal realiza una regresión logística multiclase:
diferencia entre la regresión logística y las redes neuronales . Si reemplaza la función de costo con la pérdida de la bisagra , entonces la red neuronal es un SVM optimizado en su forma primaria: http://cs231n.github.io/linear-classify/ .
Aquí está el ejemplo que se muestra en la imagen de arriba programada en TensorFlow:
""" Linear Regression Example """
# https://github.com/tflearn/tflearn/blob/master/examples/basics/linear_regression.py
from __future__ import absolute_import, division, print_function
import tflearn
# Regression data
X = [3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]
Y = [1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]
# Linear Regression graph
input_ = tflearn.input_data(shape=[None])
linear = tflearn.single_unit(input_)
regression = tflearn.regression(linear, optimizer='sgd', loss='mean_square',
metric='R2', learning_rate=0.01)
m = tflearn.DNN(regression)
m.fit(X, Y, n_epoch=1000, show_metric=True, snapshot_epoch=False)
print("\nRegression result:")
print("Y = " + str(m.get_weights(linear.W)) +
"*X + " + str(m.get_weights(linear.b)))
print("\nTest prediction for x = 3.2, 3.3, 3.4:")
print(m.predict([3.2, 3.3, 3.4]))
# should output (close, not exact) y = [1.5315033197402954, 1.5585315227508545, 1.5855598449707031]
Aquí hay un fragmento de código que no utiliza ninguna biblioteca de red neuronal:
# From http://briandolhansky.com/blog/artificial-neural-networks-linear-regression-part-1
import matplotlib.pyplot as plt
import numpy as np
# Load the data and create the data matrices X and Y
# This creates a feature vector X with a column of ones (bias)
# and a column of car weights.
# The target vector Y is a column of MPG values for each car.
X_file = np.genfromtxt('mpg.csv', delimiter=',', skip_header=1)
N = np.shape(X_file)[0]
X = np.hstack((np.ones(N).reshape(N, 1), X_file[:, 4].reshape(N, 1)))
Y = X_file[:, 0]
# Standardize the input
X[:, 1] = (X[:, 1]-np.mean(X[:, 1]))/np.std(X[:, 1])
# There are two weights, the bias weight and the feature weight
w = np.array([0, 0])
# Start batch gradient descent, it will run for max_iter epochs and have a step
# size eta
max_iter = 100
eta = 1E-3
for t in range(0, max_iter):
# We need to iterate over each data point for one epoch
grad_t = np.array([0., 0.])
for i in range(0, N):
x_i = X[i, :]
y_i = Y[i]
# Dot product, computes h(x_i, w)
h = np.dot(w, x_i)-y_i
grad_t += 2*x_i*h
# Update the weights
w = w - eta*grad_t
print "Weights found:",w
# Plot the data and best fit line
tt = np.linspace(np.min(X[:, 1]), np.max(X[:, 1]), 10)
bf_line = w[0]+w[1]*tt
plt.plot(X[:, 1], Y, 'kx', tt, bf_line, 'r-')
plt.xlabel('Weight (Normalized)')
plt.ylabel('MPG')
plt.title('ANN Regression on 1D MPG Data')
plt.savefig('mpg.png')
plt.show()
Archivo de datos mpg.csv
(~ 50% abreviado debido a la limitación de tamaño de respuesta de Stack Exchange):
mpg (n),cylinders (n),displacement (n),horsepower (n),weight (n),acceleration (n),year (n),origin (n), name (s)
18.000000,8.000000,307.000000,130.000000,3504.000000,12.000000,70.000000,1.000000
15.000000,8.000000,350.000000,165.000000,3693.000000,11.500000,70.000000,1.000000
18.000000,8.000000,318.000000,150.000000,3436.000000,11.000000,70.000000,1.000000
16.000000,8.000000,304.000000,150.000000,3433.000000,12.000000,70.000000,1.000000
17.000000,8.000000,302.000000,140.000000,3449.000000,10.500000,70.000000,1.000000
15.000000,8.000000,429.000000,198.000000,4341.000000,10.000000,70.000000,1.000000
14.000000,8.000000,454.000000,220.000000,4354.000000,9.000000,70.000000,1.000000
14.000000,8.000000,440.000000,215.000000,4312.000000,8.500000,70.000000,1.000000
14.000000,8.000000,455.000000,225.000000,4425.000000,10.000000,70.000000,1.000000
15.000000,8.000000,390.000000,190.000000,3850.000000,8.500000,70.000000,1.000000
15.000000,8.000000,383.000000,170.000000,3563.000000,10.000000,70.000000,1.000000
14.000000,8.000000,340.000000,160.000000,3609.000000,8.000000,70.000000,1.000000
15.000000,8.000000,400.000000,150.000000,3761.000000,9.500000,70.000000,1.000000
14.000000,8.000000,455.000000,225.000000,3086.000000,10.000000,70.000000,1.000000
24.000000,4.000000,113.000000,95.000000,2372.000000,15.000000,70.000000,3.000000
22.000000,6.000000,198.000000,95.000000,2833.000000,15.500000,70.000000,1.000000
18.000000,6.000000,199.000000,97.000000,2774.000000,15.500000,70.000000,1.000000
21.000000,6.000000,200.000000,85.000000,2587.000000,16.000000,70.000000,1.000000
27.000000,4.000000,97.000000,88.000000,2130.000000,14.500000,70.000000,3.000000
26.000000,4.000000,97.000000,46.000000,1835.000000,20.500000,70.000000,2.000000
25.000000,4.000000,110.000000,87.000000,2672.000000,17.500000,70.000000,2.000000
24.000000,4.000000,107.000000,90.000000,2430.000000,14.500000,70.000000,2.000000
25.000000,4.000000,104.000000,95.000000,2375.000000,17.500000,70.000000,2.000000
26.000000,4.000000,121.000000,113.000000,2234.000000,12.500000,70.000000,2.000000
21.000000,6.000000,199.000000,90.000000,2648.000000,15.000000,70.000000,1.000000
10.000000,8.000000,360.000000,215.000000,4615.000000,14.000000,70.000000,1.000000
10.000000,8.000000,307.000000,200.000000,4376.000000,15.000000,70.000000,1.000000
11.000000,8.000000,318.000000,210.000000,4382.000000,13.500000,70.000000,1.000000
9.000000,8.000000,304.000000,193.000000,4732.000000,18.500000,70.000000,1.000000
27.000000,4.000000,97.000000,88.000000,2130.000000,14.500000,71.000000,3.000000
28.000000,4.000000,140.000000,90.000000,2264.000000,15.500000,71.000000,1.000000
25.000000,4.000000,113.000000,95.000000,2228.000000,14.000000,71.000000,3.000000
19.000000,6.000000,232.000000,100.000000,2634.000000,13.000000,71.000000,1.000000
16.000000,6.000000,225.000000,105.000000,3439.000000,15.500000,71.000000,1.000000
17.000000,6.000000,250.000000,100.000000,3329.000000,15.500000,71.000000,1.000000
19.000000,6.000000,250.000000,88.000000,3302.000000,15.500000,71.000000,1.000000
18.000000,6.000000,232.000000,100.000000,3288.000000,15.500000,71.000000,1.000000
14.000000,8.000000,350.000000,165.000000,4209.000000,12.000000,71.000000,1.000000
14.000000,8.000000,400.000000,175.000000,4464.000000,11.500000,71.000000,1.000000
14.000000,8.000000,351.000000,153.000000,4154.000000,13.500000,71.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4096.000000,13.000000,71.000000,1.000000
12.000000,8.000000,383.000000,180.000000,4955.000000,11.500000,71.000000,1.000000
13.000000,8.000000,400.000000,170.000000,4746.000000,12.000000,71.000000,1.000000
13.000000,8.000000,400.000000,175.000000,5140.000000,12.000000,71.000000,1.000000
18.000000,6.000000,258.000000,110.000000,2962.000000,13.500000,71.000000,1.000000
22.000000,4.000000,140.000000,72.000000,2408.000000,19.000000,71.000000,1.000000
19.000000,6.000000,250.000000,100.000000,3282.000000,15.000000,71.000000,1.000000
18.000000,6.000000,250.000000,88.000000,3139.000000,14.500000,71.000000,1.000000
23.000000,4.000000,122.000000,86.000000,2220.000000,14.000000,71.000000,1.000000
28.000000,4.000000,116.000000,90.000000,2123.000000,14.000000,71.000000,2.000000
30.000000,4.000000,79.000000,70.000000,2074.000000,19.500000,71.000000,2.000000
30.000000,4.000000,88.000000,76.000000,2065.000000,14.500000,71.000000,2.000000
31.000000,4.000000,71.000000,65.000000,1773.000000,19.000000,71.000000,3.000000
35.000000,4.000000,72.000000,69.000000,1613.000000,18.000000,71.000000,3.000000
27.000000,4.000000,97.000000,60.000000,1834.000000,19.000000,71.000000,2.000000
26.000000,4.000000,91.000000,70.000000,1955.000000,20.500000,71.000000,1.000000
24.000000,4.000000,113.000000,95.000000,2278.000000,15.500000,72.000000,3.000000
25.000000,4.000000,97.500000,80.000000,2126.000000,17.000000,72.000000,1.000000
23.000000,4.000000,97.000000,54.000000,2254.000000,23.500000,72.000000,2.000000
20.000000,4.000000,140.000000,90.000000,2408.000000,19.500000,72.000000,1.000000
21.000000,4.000000,122.000000,86.000000,2226.000000,16.500000,72.000000,1.000000
13.000000,8.000000,350.000000,165.000000,4274.000000,12.000000,72.000000,1.000000
14.000000,8.000000,400.000000,175.000000,4385.000000,12.000000,72.000000,1.000000
15.000000,8.000000,318.000000,150.000000,4135.000000,13.500000,72.000000,1.000000
14.000000,8.000000,351.000000,153.000000,4129.000000,13.000000,72.000000,1.000000
17.000000,8.000000,304.000000,150.000000,3672.000000,11.500000,72.000000,1.000000
11.000000,8.000000,429.000000,208.000000,4633.000000,11.000000,72.000000,1.000000
13.000000,8.000000,350.000000,155.000000,4502.000000,13.500000,72.000000,1.000000
12.000000,8.000000,350.000000,160.000000,4456.000000,13.500000,72.000000,1.000000
13.000000,8.000000,400.000000,190.000000,4422.000000,12.500000,72.000000,1.000000
19.000000,3.000000,70.000000,97.000000,2330.000000,13.500000,72.000000,3.000000
15.000000,8.000000,304.000000,150.000000,3892.000000,12.500000,72.000000,1.000000
13.000000,8.000000,307.000000,130.000000,4098.000000,14.000000,72.000000,1.000000
13.000000,8.000000,302.000000,140.000000,4294.000000,16.000000,72.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4077.000000,14.000000,72.000000,1.000000
18.000000,4.000000,121.000000,112.000000,2933.000000,14.500000,72.000000,2.000000
22.000000,4.000000,121.000000,76.000000,2511.000000,18.000000,72.000000,2.000000
21.000000,4.000000,120.000000,87.000000,2979.000000,19.500000,72.000000,2.000000
26.000000,4.000000,96.000000,69.000000,2189.000000,18.000000,72.000000,2.000000
22.000000,4.000000,122.000000,86.000000,2395.000000,16.000000,72.000000,1.000000
28.000000,4.000000,97.000000,92.000000,2288.000000,17.000000,72.000000,3.000000
23.000000,4.000000,120.000000,97.000000,2506.000000,14.500000,72.000000,3.000000
28.000000,4.000000,98.000000,80.000000,2164.000000,15.000000,72.000000,1.000000
27.000000,4.000000,97.000000,88.000000,2100.000000,16.500000,72.000000,3.000000
13.000000,8.000000,350.000000,175.000000,4100.000000,13.000000,73.000000,1.000000
14.000000,8.000000,304.000000,150.000000,3672.000000,11.500000,73.000000,1.000000
13.000000,8.000000,350.000000,145.000000,3988.000000,13.000000,73.000000,1.000000
14.000000,8.000000,302.000000,137.000000,4042.000000,14.500000,73.000000,1.000000
15.000000,8.000000,318.000000,150.000000,3777.000000,12.500000,73.000000,1.000000
12.000000,8.000000,429.000000,198.000000,4952.000000,11.500000,73.000000,1.000000
13.000000,8.000000,400.000000,150.000000,4464.000000,12.000000,73.000000,1.000000
13.000000,8.000000,351.000000,158.000000,4363.000000,13.000000,73.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4237.000000,14.500000,73.000000,1.000000
13.000000,8.000000,440.000000,215.000000,4735.000000,11.000000,73.000000,1.000000
12.000000,8.000000,455.000000,225.000000,4951.000000,11.000000,73.000000,1.000000
13.000000,8.000000,360.000000,175.000000,3821.000000,11.000000,73.000000,1.000000
18.000000,6.000000,225.000000,105.000000,3121.000000,16.500000,73.000000,1.000000
16.000000,6.000000,250.000000,100.000000,3278.000000,18.000000,73.000000,1.000000
18.000000,6.000000,232.000000,100.000000,2945.000000,16.000000,73.000000,1.000000
18.000000,6.000000,250.000000,88.000000,3021.000000,16.500000,73.000000,1.000000
23.000000,6.000000,198.000000,95.000000,2904.000000,16.000000,73.000000,1.000000
26.000000,4.000000,97.000000,46.000000,1950.000000,21.000000,73.000000,2.000000
11.000000,8.000000,400.000000,150.000000,4997.000000,14.000000,73.000000,1.000000
12.000000,8.000000,400.000000,167.000000,4906.000000,12.500000,73.000000,1.000000
13.000000,8.000000,360.000000,170.000000,4654.000000,13.000000,73.000000,1.000000
12.000000,8.000000,350.000000,180.000000,4499.000000,12.500000,73.000000,1.000000
18.000000,6.000000,232.000000,100.000000,2789.000000,15.000000,73.000000,1.000000
20.000000,4.000000,97.000000,88.000000,2279.000000,19.000000,73.000000,3.000000
21.000000,4.000000,140.000000,72.000000,2401.000000,19.500000,73.000000,1.000000
22.000000,4.000000,108.000000,94.000000,2379.000000,16.500000,73.000000,3.000000
18.000000,3.000000,70.000000,90.000000,2124.000000,13.500000,73.000000,3.000000
19.000000,4.000000,122.000000,85.000000,2310.000000,18.500000,73.000000,1.000000
21.000000,6.000000,155.000000,107.000000,2472.000000,14.000000,73.000000,1.000000
26.000000,4.000000,98.000000,90.000000,2265.000000,15.500000,73.000000,2.000000
15.000000,8.000000,350.000000,145.000000,4082.000000,13.000000,73.000000,1.000000
16.000000,8.000000,400.000000,230.000000,4278.000000,9.500000,73.000000,1.000000
29.000000,4.000000,68.000000,49.000000,1867.000000,19.500000,73.000000,2.000000
24.000000,4.000000,116.000000,75.000000,2158.000000,15.500000,73.000000,2.000000
20.000000,4.000000,114.000000,91.000000,2582.000000,14.000000,73.000000,2.000000
19.000000,4.000000,121.000000,112.000000,2868.000000,15.500000,73.000000,2.000000
15.000000,8.000000,318.000000,150.000000,3399.000000,11.000000,73.000000,1.000000
24.000000,4.000000,121.000000,110.000000,2660.000000,14.000000,73.000000,2.000000
20.000000,6.000000,156.000000,122.000000,2807.000000,13.500000,73.000000,3.000000
11.000000,8.000000,350.000000,180.000000,3664.000000,11.000000,73.000000,1.000000
20.000000,6.000000,198.000000,95.000000,3102.000000,16.500000,74.000000,1.000000
19.000000,6.000000,232.000000,100.000000,2901.000000,16.000000,74.000000,1.000000
15.000000,6.000000,250.000000,100.000000,3336.000000,17.000000,74.000000,1.000000
31.000000,4.000000,79.000000,67.000000,1950.000000,19.000000,74.000000,3.000000
26.000000,4.000000,122.000000,80.000000,2451.000000,16.500000,74.000000,1.000000
32.000000,4.000000,71.000000,65.000000,1836.000000,21.000000,74.000000,3.000000
25.000000,4.000000,140.000000,75.000000,2542.000000,17.000000,74.000000,1.000000
16.000000,6.000000,250.000000,100.000000,3781.000000,17.000000,74.000000,1.000000
16.000000,6.000000,258.000000,110.000000,3632.000000,18.000000,74.000000,1.000000
18.000000,6.000000,225.000000,105.000000,3613.000000,16.500000,74.000000,1.000000
16.000000,8.000000,302.000000,140.000000,4141.000000,14.000000,74.000000,1.000000
13.000000,8.000000,350.000000,150.000000,4699.000000,14.500000,74.000000,1.000000
14.000000,8.000000,318.000000,150.000000,4457.000000,13.500000,74.000000,1.000000
14.000000,8.000000,302.000000,140.000000,4638.000000,16.000000,74.000000,1.000000
14.000000,8.000000,304.000000,150.000000,4257.000000,15.500000,74.000000,1.000000
29.000000,4.000000,98.000000,83.000000,2219.000000,16.500000,74.000000,2.000000
26.000000,4.000000,79.000000,67.000000,1963.000000,15.500000,74.000000,2.000000
26.000000,4.000000,97.000000,78.000000,2300.000000,14.500000,74.000000,2.000000
31.000000,4.000000,76.000000,52.000000,1649.000000,16.500000,74.000000,3.000000
32.000000,4.000000,83.000000,61.000000,2003.000000,19.000000,74.000000,3.000000
28.000000,4.000000,90.000000,75.000000,2125.000000,14.500000,74.000000,1.000000
24.000000,4.000000,90.000000,75.000000,2108.000000,15.500000,74.000000,2.000000
26.000000,4.000000,116.000000,75.000000,2246.000000,14.000000,74.000000,2.000000
24.000000,4.000000,120.000000,97.000000,2489.000000,15.000000,74.000000,3.000000
26.000000,4.000000,108.000000,93.000000,2391.000000,15.500000,74.000000,3.000000
31.000000,4.000000,79.000000,67.000000,2000.000000,16.000000,74.000000,2.000000
19.000000,6.000000,225.000000,95.000000,3264.000000,16.000000,75.000000,1.000000
18.000000,6.000000,250.000000,105.000000,3459.000000,16.000000,75.000000,1.000000
15.000000,6.000000,250.000000,72.000000,3432.000000,21.000000,75.000000,1.000000
15.000000,6.000000,250.000000,72.000000,3158.000000,19.500000,75.000000,1.000000
16.000000,8.000000,400.000000,170.000000,4668.000000,11.500000,75.000000,1.000000
15.000000,8.000000,350.000000,145.000000,4440.000000,14.000000,75.000000,1.000000
16.000000,8.000000,318.000000,150.000000,4498.000000,14.500000,75.000000,1.000000
14.000000,8.000000,351.000000,148.000000,4657.000000,13.500000,75.000000,1.000000
17.000000,6.000000,231.000000,110.000000,3907.000000,21.000000,75.000000,1.000000
16.000000,6.000000,250.000000,105.000000,3897.000000,18.500000,75.000000,1.000000
15.000000,6.000000,258.000000,110.000000,3730.000000,19.000000,75.000000,1.000000
18.000000,6.000000,225.000000,95.000000,3785.000000,19.000000,75.000000,1.000000
21.000000,6.000000,231.000000,110.000000,3039.000000,15.000000,75.000000,1.000000
20.000000,8.000000,262.000000,110.000000,3221.000000,13.500000,75.000000,1.000000
13.000000,8.000000,302.000000,129.000000,3169.000000,12.000000,75.000000,1.000000
29.000000,4.000000,97.000000,75.000000,2171.000000,16.000000,75.000000,3.000000
23.000000,4.000000,140.000000,83.000000,2639.000000,17.000000,75.000000,1.000000
20.000000,6.000000,232.000000,100.000000,2914.000000,16.000000,75.000000,1.000000
23.000000,4.000000,140.000000,78.000000,2592.000000,18.500000,75.000000,1.000000
24.000000,4.000000,134.000000,96.000000,2702.000000,13.500000,75.000000,3.000000
25.000000,4.000000,90.000000,71.000000,2223.000000,16.500000,75.000000,2.000000
24.000000,4.000000,119.000000,97.000000,2545.000000,17.000000,75.000000,3.000000
18.000000,6.000000,171.000000,97.000000,2984.000000,14.500000,75.000000,1.000000
29.000000,4.000000,90.000000,70.000000,1937.000000,14.000000,75.000000,2.000000
19.000000,6.000000,232.000000,90.000000,3211.000000,17.000000,75.000000,1.000000
23.000000,4.000000,115.000000,95.000000,2694.000000,15.000000,75.000000,2.000000
23.000000,4.000000,120.000000,88.000000,2957.000000,17.000000,75.000000,2.000000
22.000000,4.000000,121.000000,98.000000,2945.000000,14.500000,75.000000,2.000000
25.000000,4.000000,121.000000,115.000000,2671.000000,13.500000,75.000000,2.000000
33.000000,4.000000,91.000000,53.000000,1795.000000,17.500000,75.000000,3.000000
28.000000,4.000000,107.000000,86.000000,2464.000000,15.500000,76.000000,2.000000
25.000000,4.000000,116.000000,81.000000,2220.000000,16.900000,76.000000,2.000000
25.000000,4.000000,140.000000,92.000000,2572.000000,14.900000,76.000000,1.000000
26.000000,4.000000,98.000000,79.000000,2255.000000,17.700000,76.000000,1.000000
27.000000,4.000000,101.000000,83.000000,2202.000000,15.300000,76.000000,2.000000
17.500000,8.000000,305.000000,140.000000,4215.000000,13.000000,76.000000,1.000000
16.000000,8.000000,318.000000,150.000000,4190.000000,13.000000,76.000000,1.000000
15.500000,8.000000,304.000000,120.000000,3962.000000,13.900000,76.000000,1.000000
14.500000,8.000000,351.000000,152.000000,4215.000000,12.800000,76.000000,1.000000
22.000000,6.000000,225.000000,100.000000,3233.000000,15.400000,76.000000,1.000000
22.000000,6.000000,250.000000,105.000000,3353.000000,14.500000,76.000000,1.000000
24.000000,6.000000,200.000000,81.000000,3012.000000,17.600000,76.000000,1.000000
22.500000,6.000000,232.000000,90.000000,3085.000000,17.600000,76.000000,1.000000
29.000000,4.000000,85.000000,52.000000,2035.000000,22.200000,76.000000,1.000000
24.500000,4.000000,98.000000,60.000000,2164.000000,22.100000,76.000000,1.000000
29.000000,4.000000,90.000000,70.000000,1937.000000,14.200000,76.000000,2.000000
33.000000,4.000000,91.000000,53.000000,1795.000000,17.400000,76.000000,3.000000
20.000000,6.000000,225.000000,100.000000,3651.000000,17.700000,76.000000,1.000000
18.000000,6.000000,250.000000,78.000000,3574.000000,21.000000,76.000000,1.000000
18.500000,6.000000,250.000000,110.000000,3645.000000,16.200000,76.000000,1.000000
17.500000,6.000000,258.000000,95.000000,3193.000000,17.800000,76.000000,1.000000
29.500000,4.000000,97.000000,71.000000,1825.000000,12.200000,76.000000,2.000000
32.000000,4.000000,85.000000,70.000000,1990.000000,17.000000,76.000000,3.000000
28.000000,4.000000,97.000000,75.000000,2155.000000,16.400000,76.000000,3.000000
26.500000,4.000000,140.000000,72.000000,2565.000000,13.600000,76.000000,1.000000
20.000000,4.000000,130.000000,102.000000,3150.000000,15.700000,76.000000,2.000000
13.000000,8.000000,318.000000,150.000000,3940.000000,13.200000,76.000000,1.000000
19.000000,4.000000,120.000000,88.000000,3270.000000,21.900000,76.000000,2.000000
19.000000,6.000000,156.000000,108.000000,2930.000000,15.500000,76.000000,3.000000
16.500000,6.000000,168.000000,120.000000,3820.000000,16.700000,76.000000,2.000000
16.500000,8.000000,350.000000,180.000000,4380.000000,12.100000,76.000000,1.000000
13.000000,8.000000,350.000000,145.000000,4055.000000,12.000000,76.000000,1.000000
13.000000,8.000000,302.000000,130.000000,3870.000000,15.000000,76.000000,1.000000
13.000000,8.000000,318.000000,150.000000,3755.000000,14.000000,76.000000,1.000000
31.500000,4.000000,98.000000,68.000000,2045.000000,18.500000,77.000000,3.000000
30.000000,4.000000,111.000000,80.000000,2155.000000,14.800000,77.000000,1.000000
36.000000,4.000000,79.000000,58.000000,1825.000000,18.600000,77.000000,2.000000
25.500000,4.000000,122.000000,96.000000,2300.000000,15.500000,77.000000,1.000000
33.500000,4.000000,85.000000,70.000000,1945.000000,16.800000,77.000000,3.000000
17.500000,8.000000,305.000000,145.000000,3880.000000,12.500000,77.000000,1.000000
17.000000,8.000000,260.000000,110.000000,4060.000000,19.000000,77.000000,1.000000
15.500000,8.000000,318.000000,145.000000,4140.000000,13.700000,77.000000,1.000000
15.000000,8.000000,302.000000,130.000000,4295.000000,14.900000,77.000000,1.000000
17.500000,6.000000,250.000000,110.000000,3520.000000,16.400000,77.000000,1.000000
20.500000,6.000000,231.000000,105.000000,3425.000000,16.900000,77.000000,1.000000
19.000000,6.000000,225.000000,100.000000,3630.000000,17.700000,77.000000,1.000000
18.500000,6.000000,250.000000,98.000000,3525.000000,19.000000,77.000000,1.000000
16.000000,8.000000,400.000000,180.000000,4220.000000,11.100000,77.000000,1.000000
15.500000,8.000000,350.000000,170.000000,4165.000000,11.400000,77.000000,1.000000
15.500000,8.000000,400.000000,190.000000,4325.000000,12.200000,77.000000,1.000000
16.000000,8.000000,351.000000,149.000000,4335.000000,14.500000,77.000000,1.000000
29.000000,4.000000,97.000000,78.000000,1940.000000,14.500000,77.000000,2.000000
24.500000,4.000000,151.000000,88.000000,2740.000000,16.000000,77.000000,1.000000
26.000000,4.000000,97.000000,75.000000,2265.000000,18.200000,77.000000,3.000000
25.500000,4.000000,140.000000,89.000000,2755.000000,15.800000,77.000000,1.000000
30.500000,4.000000,98.000000,63.000000,2051.000000,17.000000,77.000000,1.000000
33.500000,4.000000,98.000000,83.000000,2075.000000,15.900000,77.000000,1.000000
30.000000,4.000000,97.000000,67.000000,1985.000000,16.400000,77.000000,3.000000
30.500000,4.000000,97.000000,78.000000,2190.000000,14.100000,77.000000,2.000000
22.000000,6.000000,146.000000,97.000000,2815.000000,14.500000,77.000000,3.000000
21.500000,4.000000,121.000000,110.000000,2600.000000,12.800000,77.000000,2.000000
21.500000,3.000000,80.000000,110.000000,2720.000000,13.500000,77.000000,3.000000
43.100000,4.000000,90.000000,48.000000,1985.000000,21.500000,78.000000,2.000000
36.100000,4.000000,98.000000,66.000000,1800.000000,14.400000,78.000000,1.000000
32.800000,4.000000,78.000000,52.000000,1985.000000,19.400000,78.000000,3.000000
39.400000,4.000000,85.000000,70.000000,2070.000000,18.600000,78.000000,3.000000
36.100000,4.000000,91.000000,60.000000,1800.000000,16.400000,78.000000,3.000000
19.900000,8.000000,260.000000,110.000000,3365.000000,15.500000,78.000000,1.000000
Para la regresión, que para el aprendizaje profundo no es lineal en la mayoría de los casos, la capa final tiene 1 neurona con función de identidad y la función de pérdida que optimizamos es MSE, MAE en lugar de la entropía cruzada binaria o categórica utilizada para la clasificación.
fuente