lme4 u otro código de paquete R de código abierto equivalente a asreml-R

13

Quiero ajustar el modelo mixto usando lme4, nlme, paquete de regresión baysiana o cualquier otro disponible.

Modelo mixto en convenciones de codificación Asreml-R

antes de entrar en detalles, es posible que deseemos tener detalles sobre las convenciones asreml-R, para aquellos que no están familiarizados con los códigos ASREML.

y = Xτ + Zu + e ........................(1) ; 

el modelo mixto habitual con, y denota el vector n × 1 de observaciones, donde τ es el vector p × 1 de efectos fijos, X es una matriz de diseño n × p de rango de columna completa que asocia las observaciones con la combinación apropiada de efectos fijos , u es el vector q × 1 de efectos aleatorios, Z es la matriz de diseño n × q que asocia las observaciones con la combinación apropiada de efectos aleatorios, y e es el vector n × 1 de errores residuales. El modelo (1) se llama un modelo lineal mixto o modelo de efectos lineales mixtos. Es asumido

ingrese la descripción de la imagen aquí

donde las matrices G y R son funciones de los parámetros γ y φ, respectivamente.

El parámetro θ es un parámetro de varianza al que nos referiremos como parámetro de escala.

En los modelos de efectos mixtos con más de una varianza residual, que surgen, por ejemplo, en el análisis de datos con más de una sección o variante, el parámetro θ se fija en uno. En los modelos de efectos mixtos con una sola varianza residual, entonces θ es igual a la varianza residual (σ2). En este caso, R debe ser una matriz de correlación. Se proporcionan más detalles sobre los modelos en el manual de Asreml (enlace) .

Estructuras de varianza para los errores: estructura R y estructuras de varianza para los efectos aleatorios: se pueden especificar estructuras G.

ingrese la descripción de la imagen aquíingrese la descripción de la imagen aquí

modelado de varianza en asreml () es importante comprender la formación de estructuras de varianza a través de productos directos. El supuesto habitual de mínimos cuadrados (y el valor predeterminado en asreml ()) es que estos están distribuidos de forma independiente e idéntica (IID). Sin embargo, si los datos provienen de un experimento de campo establecido en una matriz rectangular de r filas por c columnas, por ejemplo, podríamos organizar los residuos e como una matriz y potencialmente considerar que estaban autocorrelacionados dentro de filas y columnas. un vector en orden de campo, es decir, clasificando las filas residuales dentro de columnas (parcelas dentro de bloques) la variación de los residuos podría ser

ingrese la descripción de la imagen aquí ingrese la descripción de la imagen aquíson matrices de correlación para el modelo de fila (orden r, parámetro de autocorrelación ½r) y modelo de columna (orden c, parámetro de autocorrelación ½c) respectivamente. Más específicamente, a veces se supone una estructura espacial autorregresiva separable bidimensional (AR1 x AR1) para los errores comunes en un análisis de prueba de campo.

Los datos de ejemplo:

nin89 es de la biblioteca asreml-R, donde se cultivaron diferentes variedades en replicaciones / bloques en campo rectangular. Para controlar la variabilidad adicional en la dirección de la fila o columna, cada gráfico se referencia como variables de fila y columna (diseño de columna de fila). Por lo tanto, este diseño de columna de fila con bloqueo. El rendimiento se mide variable.

Modelos de ejemplo

Necesito algo equivalente a los códigos asreml-R:

La sintaxis simple del modelo se verá así:

 rcb.asr <- asreml(yield  Variety, random =  Replicate, data = nin89)  
 .....model 0

El modelo lineal se especifica en los argumentos fijo (requerido), aleatorio (opcional) y rcov (componente de error) como objetos de fórmula. El valor predeterminado es un término de error simple y no necesita especificarse formalmente para el término de error como en el modelo 0 .

aquí la variedad es de efecto fijo y aleatoria son las repeticiones (bloques). Además de los términos aleatorios y fijos, podemos especificar el término de error. Cuál es el valor predeterminado en este modelo 0. El componente residual o de error del modelo se especifica en un objeto de fórmula a través del argumento rcov, consulte los siguientes modelos 1: 4.

El siguiente modelo1 es más complejo en el que se especifican las estructuras G (aleatoria) y R (error).

Modelo 1:

data(nin89)


 # Model 1: RCB analysis with G and R structure
     rcb.asr <- asreml(yield ~ Variety, random = ~ idv(Replicate), 
      rcov = ~ idv(units), data = nin89)

Este modelo es equivalente al modelo 0 anterior e introduce el uso del modelo de varianza G y R. Aquí la opción random y rcov especifica fórmulas random y rcov para especificar explícitamente las estructuras G y R. donde idv () es la función de modelo especial en asreml () que identifica el modelo de varianza. La expresión idv (unidades) establece explícitamente la matriz de varianza para e en una identidad escalada.

# Modelo 2: modelo espacial bidimensional con correlación en una dirección

  sp.asr <- asreml(yield ~ Variety, rcov = ~ Column:ar1(Row), data = nin89)

Las unidades experimentales de nin89 están indexadas por columna y fila. Por lo tanto, esperamos una variación aleatoria en dos direcciones: dirección de fila y columna en este caso. donde ar1 () es una función especial que especifica un modelo de varianza autorregresiva de primer orden para Row. Esta llamada especifica una estructura espacial bidimensional para el error pero con correlación espacial solo en la dirección de la fila. El modelo de varianza para Columna es identidad (id ()) pero no necesita especificarse formalmente, ya que este es el valor predeterminado.

# modelo 3: modelo espacial bidimensional, estructura de error en ambas direcciones

 sp.asr <- asreml(yield ~ Variety, rcov = ~ ar1(Column):ar1(Row),  
 data = nin89)
sp.asr <- asreml(yield ~ Variety, random = ~ units, 
 rcov = ~ ar1(Column):ar1(Row), data = nin89)

similar al modelo 2 anterior, sin embargo, la correlación es de dos direcciones: una autorregresiva.

No estoy seguro de cuánto de estos modelos son posibles con los paquetes R de código abierto. Incluso si la solución de cualquiera de estos modelos será de gran ayuda. ¡Incluso si el grupo de +50 puede estimular el desarrollo de tal paquete, será de gran ayuda!

Ver MAYSaseen ha proporcionado resultados de cada modelo y datos (como respuesta) para la comparación.

Ediciones: La siguiente es la sugerencia que recibí en el foro de discusión de modelos mixtos: "Puede mirar los paquetes de regresión y de covalencia espacial de David Clifford. El primero permite el ajuste de modelos mixtos (gaussianos) donde puede especificar la estructura de la matriz de covarianza de manera muy flexible (por ejemplo, lo he usado para datos genealógicos). El paquete spaceCovariance utiliza la regresión para proporcionar modelos más elaborados que AR1xAR1, pero puede ser aplicable. Puede que tenga que comunicarse con el autor para aplicarlo a su problema exacto ".

John
fuente
Estoy bastante seguro de que los modelos 2-4 no son posibles lme4. ¿Puede (a) decirnos por qué necesita hacer esto en lme4lugar de asreml-R(b) considerar publicar r-sig-mixed-modelsdónde hay experiencia más relevante?
Ben Bolker el
la idea básica es que asreml-R requiere una licencia (al menos para usuarios de países desarrollados), si es posible en lme4 u otros paquetes de modelos mixtos que sería genial ...
John
Creo que esto no va a ser fácil. Creo que su mejor opción podría ser definir un nuevo corStructen nlme(para correlaciones anisotrópicas) ... Sería útil si pudiera establecer brevemente (en palabras o ecuaciones) los modelos estadísticos correspondientes a estas declaraciones ASREML, ya que no todos estamos familiarizados con Sintaxis ASREML ...
Ben Bolker 01 de
1
Los siguientes son comentarios en un grupo de modelos mixtos: puede consultar los paquetes de regresión y covalencia espacial de David Clifford. El primero permite el ajuste de modelos mixtos (gaussianos) donde puede especificar la estructura de la matriz de covarianza de manera muy flexible (por ejemplo, la he usado para datos de pedigrí). El paquete spaceCovariance utiliza la regresión para proporcionar modelos más elaborados que AR1xAR1, pero puede ser aplicable. Es posible que deba comunicarse con el autor para aplicarlo a su problema exacto.
John
1
Si tengo la oportunidad, trataré de abordar todo lo que pueda, pero, francamente, es posible que no lo logre, tengo mucho en mi plato. Analizar los paquetes que David Clifford sugirió parece una gran idea: tal vez pueda resolver su propio problema de esa manera ... Estoy bastante seguro de que se puede hacer con el modelo 1 MCMCglmm, y estoy bastante seguro de que (aparte de lo spatialCovariancemencionado, con lo que no estoy familiarizado), la única forma de hacerlo en R es definiendo nuevos corStructs, lo cual es posible, pero no trivial.
Ben Bolker

Respuestas:

4

Puede ajustar este modelo con AD Model Builder. AD Model Builder es un software gratuito para construir modelos generales no lineales, incluidos modelos generales de efectos aleatorios no lineales. Entonces, por ejemplo, podría ajustarse a un modelo espacial binomial negativo donde tanto la dispersión media como la sobredispersión tenían una estructura ar (1) x ar (1). Construí el código para este ejemplo y lo ajusté a los datos. Si alguien está interesado, probablemente sea mejor discutir esto en la lista en http://admb-project.org

Nota: Existe una versión R de ADMB, pero las características disponibles en el paquete R son un subconjunto del software ADMB independiente.

Para este ejemplo, es más fácil crear un archivo ASCII con los datos, leerlo en el programa ADMB, ejecutar el programa y luego leer las estimaciones de parámetros, etc. de nuevo en R para lo que quiera hacer.

Debe comprender que ADMB no es una colección de paquetes, sino más bien un lenguaje para escribir software de estimación de parámetros no lineales. Como dije antes, es mejor discutir esto en la lista de ADMB donde todos conocen el software. Una vez hecho esto y comprenda el modelo, puede publicar los resultados aquí. Sin embargo, aquí hay un enlace a los códigos ML y REML que reuní para los datos de trigo.

http://lists.admb-project.org/pipermail/users/attachments/20111124/448923c8/attachment.zip

Dave Fournier
fuente
¿Hay interfase R para conectarse con AD Model Builder?
John
1

Modelo 0

ASReml-R

rcb0.asr <- asreml(yield~Variety, random=~Rep, data=nin89, na.method.X="include")
summary(rcb0.asr)
$call
asreml(fixed = yield ~ Variety, random = ~Rep, data = nin89, 
    na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 7.041475

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"

summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive

> anova(rcb0.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   12001.6        242.054    <2e-16 ***
Variety       55    2387.5         48.152    0.7317    
residual (MS)         49.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb0.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb0.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432659
Rep_3 -0.8712739
Rep_4 -3.8515918

lme4

> rcb0.lmer <- lmer(yield~Variety+(1|Rep), data=nin89)
> print(rcb0.lmer, corr=FALSE)
Linear mixed model fit by REML 
Formula: yield ~ Variety + (1 | Rep) 
   Data: nin89 
  AIC  BIC logLik deviance REMLdev
 1334 1532 -608.9     1456    1218
Random effects:
 Groups   Name        Variance Std.Dev.
 Rep      (Intercept)  9.8829  3.1437  
 Residual             49.5824  7.0415  
Number of obs: 224, groups: Rep, 4

Fixed effects:
                  Estimate Std. Error t value
(Intercept)        29.4375     3.8556   7.635
VarietyBRULE       -3.3625     4.9791  -0.675
VarietyBUCKSKIN    -3.8750     4.9791  -0.778
VarietyCENTURA     -7.7875     4.9791  -1.564
VarietyCENTURK78    0.8625     4.9791   0.173
VarietyCHEYENNE    -1.3750     4.9791  -0.276
VarietyCODY        -8.2250     4.9791  -1.652
VarietyCOLT        -2.4375     4.9791  -0.490
VarietyGAGE        -4.9250     4.9791  -0.989
VarietyHOMESTEAD   -1.8000     4.9791  -0.362
VarietyKS831374    -5.3125     4.9791  -1.067
VarietyLANCER      -0.8750     4.9791  -0.176
VarietyLANCOTA     -2.8875     4.9791  -0.580
VarietyNE83404     -2.0500     4.9791  -0.412
VarietyNE83406     -5.1625     4.9791  -1.037
VarietyNE83407     -6.7500     4.9791  -1.356
VarietyNE83432     -9.7125     4.9791  -1.951
VarietyNE83498      0.6875     4.9791   0.138
VarietyNE83T12     -7.8750     4.9791  -1.582
VarietyNE84557     -8.9125     4.9791  -1.790
VarietyNE85556     -3.0500     4.9791  -0.613
VarietyNE85623     -7.7125     4.9791  -1.549
VarietyNE86482     -5.1500     4.9791  -1.034
VarietyNE86501      1.5000     4.9791   0.301
VarietyNE86503      3.2125     4.9791   0.645
VarietyNE86507     -5.6500     4.9791  -1.135
VarietyNE86509     -2.5875     4.9791  -0.520
VarietyNE86527     -7.4250     4.9791  -1.491
VarietyNE86582     -4.9000     4.9791  -0.984
VarietyNE86606      0.3250     4.9791   0.065
VarietyNE86607     -0.1125     4.9791  -0.023
VarietyNE86T666    -7.9000     4.9791  -1.587
VarietyNE87403     -4.3125     4.9791  -0.866
VarietyNE87408     -3.1375     4.9791  -0.630
VarietyNE87409     -8.0625     4.9791  -1.619
VarietyNE87446     -1.7625     4.9791  -0.354
VarietyNE87451     -4.8250     4.9791  -0.969
VarietyNE87457     -5.5250     4.9791  -1.110
VarietyNE87463     -3.5250     4.9791  -0.708
VarietyNE87499     -9.0250     4.9791  -1.813
VarietyNE87512     -6.1875     4.9791  -1.243
VarietyNE87513     -2.6250     4.9791  -0.527
VarietyNE87522     -4.4375     4.9791  -0.891
VarietyNE87612     -7.6375     4.9791  -1.534
VarietyNE87613     -0.0375     4.9791  -0.008
VarietyNE87615     -3.7500     4.9791  -0.753
VarietyNE87619      1.8250     4.9791   0.367
VarietyNE87627     -6.2125     4.9791  -1.248
VarietyNORKAN      -5.0250     4.9791  -1.009
VarietyREDLAND      1.0625     4.9791   0.213
VarietyROUGHRIDER  -8.2500     4.9791  -1.657
VarietySCOUT66     -1.9125     4.9791  -0.384
VarietySIOUXLAND    0.6750     4.9791   0.136
VarietyTAM107      -1.0375     4.9791  -0.208
VarietyTAM200      -8.2000     4.9791  -1.647
VarietyVONA        -5.8375     4.9791  -1.172
> anova(rcb0.lmer)
Analysis of Variance Table
        Df Sum Sq Mean Sq F value
Variety 55 2387.5  43.409  0.8755
> fixef(rcb0.lmer)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lmer)
$Rep
  (Intercept)
1   1.8798700
2   2.8436747
3  -0.8713991
4  -3.8521455

nlme

> rcb0.lme <- lme(yield~Variety, random=~1|Rep, data=na.omit(nin89))
> print(rcb0.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~1 | Rep
        (Intercept) Residual
StdDev:     3.14371 7.041475

Number of Observations: 224
Number of Groups: 4 
> anova(rcb0.lme)
            numDF denDF   F-value p-value
(Intercept)     1   165 242.05402  <.0001
Variety        55   165   0.87549  0.7119
> fixef(rcb0.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb0.lme)
  (Intercept)
1   1.8795997
2   2.8432659
3  -0.8712739
4  -3.8515918
MYaseen208
fuente
1

Modelo 1

ASReml-R

> rcb.asr <- asreml(yield~Variety, random=~idv(Rep), rcov=~idv(units), data=nin89, na.method.X="include")
> summary(rcb.asr)
$call
asreml(fixed = yield ~ Variety, random = ~idv(Rep), rcov = ~idv(units), 
    data = nin89, na.method.X = "include")

$loglik
[1] -454.4691

$nedf
[1] 168

$sigma
[1] 1

$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var  9.882911  9.882911  8.792823 1.123975   Positive
R!variance   1.000000  1.000000        NA       NA      Fixed
R!units.var 49.582368 49.582368  5.458839 9.082951   Positive

attr(,"class")
[1] "summary.asreml"
> summary(rcb0.asr)$varcomp
                gamma component std.error  z.ratio constraint
Rep!Rep.var 0.1993231  9.882911  8.792829 1.123974   Positive
R!variance  1.0000000 49.582368  5.458839 9.082951   Positive
> anova(rcb.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   242.054        242.054    <2e-16 ***
Variety       55    48.152         48.152    0.7317    
residual (MS)        1.000                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(rcb.asr)$fixed
                    effect
Variety_ARAPAHOE    0.0000
Variety_BRULE      -3.3625
Variety_BUCKSKIN   -3.8750
Variety_CENTURA    -7.7875
Variety_CENTURK78   0.8625
Variety_CHEYENNE   -1.3750
Variety_CODY       -8.2250
Variety_COLT       -2.4375
Variety_GAGE       -4.9250
Variety_HOMESTEAD  -1.8000
Variety_KS831374   -5.3125
Variety_LANCER     -0.8750
Variety_LANCOTA    -2.8875
Variety_NE83404    -2.0500
Variety_NE83406    -5.1625
Variety_NE83407    -6.7500
Variety_NE83432    -9.7125
Variety_NE83498     0.6875
Variety_NE83T12    -7.8750
Variety_NE84557    -8.9125
Variety_NE85556    -3.0500
Variety_NE85623    -7.7125
Variety_NE86482    -5.1500
Variety_NE86501     1.5000
Variety_NE86503     3.2125
Variety_NE86507    -5.6500
Variety_NE86509    -2.5875
Variety_NE86527    -7.4250
Variety_NE86582    -4.9000
Variety_NE86606     0.3250
Variety_NE86607    -0.1125
Variety_NE86T666   -7.9000
Variety_NE87403    -4.3125
Variety_NE87408    -3.1375
Variety_NE87409    -8.0625
Variety_NE87446    -1.7625
Variety_NE87451    -4.8250
Variety_NE87457    -5.5250
Variety_NE87463    -3.5250
Variety_NE87499    -9.0250
Variety_NE87512    -6.1875
Variety_NE87513    -2.6250
Variety_NE87522    -4.4375
Variety_NE87612    -7.6375
Variety_NE87613    -0.0375
Variety_NE87615    -3.7500
Variety_NE87619     1.8250
Variety_NE87627    -6.2125
Variety_NORKAN     -5.0250
Variety_REDLAND     1.0625
Variety_ROUGHRIDER -8.2500
Variety_SCOUT66    -1.9125
Variety_SIOUXLAND   0.6750
Variety_TAM107     -1.0375
Variety_TAM200     -8.2000
Variety_VONA       -5.8375
(Intercept)        29.4375
> coef(rcb.asr)$random
          effect
Rep_1  1.8795997
Rep_2  2.8432658
Rep_3 -0.8712738
Rep_4 -3.8515916

nlme

Ver el truco

> nin89$Int <- 1
> rcb.lme <- lme(yield~Variety, random=list(Int=pdIdent(~Rep-1)), data=na.omit(nin89))
> print(rcb.lme, corr=FALSE)
Linear mixed-effects model fit by REML
  Data: na.omit(nin89) 
  Log-restricted-likelihood: -608.8508
  Fixed: yield ~ Variety 
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 

Random effects:
 Formula: ~Rep - 1 | Int
 Structure: Multiple of an Identity
           Rep1    Rep2    Rep3    Rep4 Residual
StdDev: 3.14371 3.14371 3.14371 3.14371 7.041475

Number of Observations: 224
Number of Groups: 1 
> anova(rcb.lme)
            numDF denDF   F-value p-value
(Intercept)     1   168 242.05402  <.0001
Variety        55   168   0.87549  0.7121
> fixef(rcb.lme)
      (Intercept)      VarietyBRULE   VarietyBUCKSKIN    VarietyCENTURA 
          29.4375           -3.3625           -3.8750           -7.7875 
 VarietyCENTURK78   VarietyCHEYENNE       VarietyCODY       VarietyCOLT 
           0.8625           -1.3750           -8.2250           -2.4375 
      VarietyGAGE  VarietyHOMESTEAD   VarietyKS831374     VarietyLANCER 
          -4.9250           -1.8000           -5.3125           -0.8750 
   VarietyLANCOTA    VarietyNE83404    VarietyNE83406    VarietyNE83407 
          -2.8875           -2.0500           -5.1625           -6.7500 
   VarietyNE83432    VarietyNE83498    VarietyNE83T12    VarietyNE84557 
          -9.7125            0.6875           -7.8750           -8.9125 
   VarietyNE85556    VarietyNE85623    VarietyNE86482    VarietyNE86501 
          -3.0500           -7.7125           -5.1500            1.5000 
   VarietyNE86503    VarietyNE86507    VarietyNE86509    VarietyNE86527 
           3.2125           -5.6500           -2.5875           -7.4250 
   VarietyNE86582    VarietyNE86606    VarietyNE86607   VarietyNE86T666 
          -4.9000            0.3250           -0.1125           -7.9000 
   VarietyNE87403    VarietyNE87408    VarietyNE87409    VarietyNE87446 
          -4.3125           -3.1375           -8.0625           -1.7625 
   VarietyNE87451    VarietyNE87457    VarietyNE87463    VarietyNE87499 
          -4.8250           -5.5250           -3.5250           -9.0250 
   VarietyNE87512    VarietyNE87513    VarietyNE87522    VarietyNE87612 
          -6.1875           -2.6250           -4.4375           -7.6375 
   VarietyNE87613    VarietyNE87615    VarietyNE87619    VarietyNE87627 
          -0.0375           -3.7500            1.8250           -6.2125 
    VarietyNORKAN    VarietyREDLAND VarietyROUGHRIDER    VarietySCOUT66 
          -5.0250            1.0625           -8.2500           -1.9125 
 VarietySIOUXLAND     VarietyTAM107     VarietyTAM200       VarietyVONA 
           0.6750           -1.0375           -8.2000           -5.8375 
> ranef(rcb.lme)
    Rep1     Rep2       Rep3      Rep4
1 1.8796 2.843266 -0.8712739 -3.851592
MYaseen208
fuente
1

Modelo 2

ASReml-R

sp1.asr <- asreml(yield~Variety, rcov=~Column:ar1(Row), data=nin89, na.method.X="include")

> summary(sp1.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~Column:ar1(Row), data = nin89, 
    na.method.X = "include")

$loglik
[1] -408.1412

$nedf
[1] 168

$sigma
[1] 7.975127

$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp1.asr)$varcomp
               gamma  component  std.error   z.ratio    constraint
R!variance 1.0000000 63.6026561 11.3182328  5.619486      Positive
R!Row.cor  0.7795799  0.7795799  0.0406026 19.200245 Unconstrained
> anova(sp1.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   24604.3         386.84 < 2.2e-16 ***
Variety       55    7974.4         125.38 2.048e-07 ***
residual (MS)         63.6                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp1.asr)$fixed
                        effect
Variety_ARAPAHOE     0.0000000
Variety_BRULE       -2.4048816
Variety_BUCKSKIN     7.8064972
Variety_CENTURA     -1.6997427
Variety_CENTURK78   -1.3829446
Variety_CHEYENNE    -1.1113084
Variety_CODY        -6.7461911
Variety_COLT        -1.7963394
Variety_GAGE        -3.4539524
Variety_HOMESTEAD   -5.5877510
Variety_KS831374    -0.8589476
Variety_LANCER      -2.8418476
Variety_LANCOTA     -5.9394801
Variety_NE83404     -3.4112613
Variety_NE83406     -1.9057358
Variety_NE83407     -3.2563922
Variety_NE83432     -5.4594311
Variety_NE83498      0.6446010
Variety_NE83T12     -4.0071361
Variety_NE84557     -4.2005181
Variety_NE85556      1.4836395
Variety_NE85623     -2.7617129
Variety_NE86482     -1.4309381
Variety_NE86501     -2.2287462
Variety_NE86503     -0.4557866
Variety_NE86507     -0.6983418
Variety_NE86509     -3.9215624
Variety_NE86527      0.5294386
Variety_NE86582     -5.4653632
Variety_NE86606     -0.7291575
Variety_NE86607     -0.1265536
Variety_NE86T666   -12.1437291
Variety_NE87403     -7.4623631
Variety_NE87408     -3.3586380
Variety_NE87409     -1.0360336
Variety_NE87446     -4.9030958
Variety_NE87451     -3.2836149
Variety_NE87457     -3.5244583
Variety_NE87463     -3.8427658
Variety_NE87499     -4.6298393
Variety_NE87512     -5.3760809
Variety_NE87513     -5.5656241
Variety_NE87522     -7.6500899
Variety_NE87612     -2.7225851
Variety_NE87613     -0.8793319
Variety_NE87615     -4.0089291
Variety_NE87619      0.7975626
Variety_NE87627    -10.1315147
Variety_NORKAN      -7.1804945
Variety_REDLAND      0.6753066
Variety_ROUGHRIDER  -0.9637487
Variety_SCOUT66      0.7088916
Variety_SIOUXLAND   -1.1998807
Variety_TAM107      -3.7160351
Variety_TAM200      -9.0340942
Variety_VONA        -2.7970689
(Intercept)         28.3487457

nlme

Trabajando en, pero no resuelto. Podría ser algo como esto. Todavía no podía entender cómo hacer rcov=~Column:ar1(Row)connlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))
MYaseen208
fuente
1

Modelo 3

ASReml-R

sp2.asr <- asreml(yield~Variety, rcov=~ar1(Column):ar1(Row), data=nin89, na.method.X="include")

> summary(sp2.asr)
$call
asreml(fixed = yield ~ Variety, rcov = ~ar1(Column):ar1(Row), 
    data = nin89, na.method.X = "include")

$loglik
[1] -399.3238

$nedf
[1] 168

$sigma
[1] 6.978728

$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained

attr(,"class")
[1] "summary.asreml"
> summary(sp2.asr)$varcomp
                 gamma  component  std.error   z.ratio    constraint
R!variance   1.0000000 48.7026395 7.15527571  6.806536      Positive
R!Column.cor 0.4375045  0.4375045 0.08060227  5.427943 Unconstrained
R!Row.cor    0.6554798  0.6554798 0.05637709 11.626704 Unconstrained
> anova(sp2.asr)
Wald tests for fixed effects

Response: yield

Terms added sequentially; adjusted for those above

              Df Sum of Sq Wald statistic Pr(Chisq)    
(Intercept)    1   16165.6         331.93 < 2.2e-16 ***
Variety       55    5961.7         122.41 4.866e-07 ***
residual (MS)         48.7                             
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1   1 
> coef(sp2.asr)$fixed
                         effect
Variety_ARAPAHOE     0.00000000
Variety_BRULE        0.03029321
Variety_BUCKSKIN     8.89207227
Variety_CENTURA     -0.68979639
Variety_CENTURK78    0.16461970
Variety_CHEYENNE     0.50267820
Variety_CODY        -3.26960093
Variety_COLT        -0.51826695
Variety_GAGE        -0.95824999
Variety_HOMESTEAD   -4.57873078
Variety_KS831374     0.27843476
Variety_LANCER      -2.95379384
Variety_LANCOTA     -4.67006598
Variety_NE83404     -1.32290865
Variety_NE83406     -1.66351994
Variety_NE83407     -2.64471830
Variety_NE83432     -4.42828427
Variety_NE83498      1.80418738
Variety_NE83T12     -2.11789109
Variety_NE84557     -2.34685080
Variety_NE85556      2.78001120
Variety_NE85623     -1.42164134
Variety_NE86482     -1.63334029
Variety_NE86501     -2.94339063
Variety_NE86503     -0.95747374
Variety_NE86507      0.46223383
Variety_NE86509     -3.27166458
Variety_NE86527      1.86588098
Variety_NE86582     -3.87940069
Variety_NE86606      0.22753741
Variety_NE86607      0.60702026
Variety_NE86T666   -10.27005825
Variety_NE87403     -7.43945904
Variety_NE87408     -3.10433009
Variety_NE87409      1.29746980
Variety_NE87446     -4.15943316
Variety_NE87451     -1.85324718
Variety_NE87457     -2.31156727
Variety_NE87463     -4.47086114
Variety_NE87499     -1.85909637
Variety_NE87512     -4.06473578
Variety_NE87513     -3.99604937
Variety_NE87522     -5.52109215
Variety_NE87612     -1.95543098
Variety_NE87613     -0.83160454
Variety_NE87615     -1.92104271
Variety_NE87619      2.98322047
Variety_NE87627     -7.33205188
Variety_NORKAN      -5.78418023
Variety_REDLAND      1.75249392
Variety_ROUGHRIDER  -0.97736288
Variety_SCOUT66      2.13126094
Variety_SIOUXLAND   -2.54195346
Variety_TAM107      -1.59083563
Variety_TAM200      -6.54229161
Variety_VONA        -1.52728371
(Intercept)         27.04285175

nlme

Trabajando en, pero no resuelto. Podría ser algo como esto. Todavía no podía entender cómo hacer rcov=~ar1(Column):ar1(Row)connlme

nin89$Int <- 1
sp1.lme <- lme(yield~Variety, random=~1|Int, data=na.omit(nin89))

No pude descubrir cómo adaptar los modelos 2 y 3 nlme. Estoy trabajando en ello y actualizaré la respuesta cuando lo haga. Pero he incluido el resultado de los ASReml-Rmodelos 2 y 3 para fines de comparación. Kevin tiene una buena experiencia en el análisis de tales modelos y Ben Bolker tiene una autoridad maravillosa en modelos mixtos. Espero que puedan ayudarnos en los modelos 2 y 3.

MYaseen208
fuente