Vengo de un fondo de C #, donde LINQ evolucionó a Rx.NET, pero siempre tenía algún interés en FP. Después de una introducción a las mónadas y algunos proyectos paralelos en F #, estaba listo para intentar pasar al siguiente nivel.
Ahora, después de varias charlas sobre la mónada gratuita por parte de personas de Scala, y múltiples escritos en Haskell, o F #, he encontrado gramáticas con intérpretes para que la comprensión sea bastante similar a las IObservable
cadenas.
En FRP, compones una definición de operación a partir de fragmentos específicos de dominios más pequeños que incluyen efectos secundarios y fallas que permanecen dentro de la cadena, y modelas tu aplicación como un conjunto de operaciones y efectos secundarios. En Mónada libre, si entendí correctamente, usted hace lo mismo haciendo sus operaciones como functors y levantándolos con coyoneda.
¿Cuáles serían las diferencias entre ambos que inclinan la aguja hacia cualquiera de los enfoques? ¿Cuál es la diferencia fundamental al definir su servicio o programa?
fuente
Cont
es la única mónada que he visto que sugiere que no puede expresarse a través de la mónada libre, uno probablemente puede suponer que FRP sí puede serlo. Como casi cualquier otra cosa .IObservable
es una instancia de la mónada de continuación.Respuestas:
Mónadas
Una mónada consiste en
Un endofunctor . En nuestro mundo de ingeniería de software, podemos decir que corresponde a un tipo de datos con un único parámetro de tipo sin restricciones. En C #, esto sería algo de la forma:
Dos operaciones definidas sobre ese tipo de datos:
return
/pure
toma un valor "puro" (es decir, unT
valor) y lo "envuelve" en la mónada (es decir, produce unM<T>
valor). Dado quereturn
es una palabra clave reservada en C #, usarépure
para referirme a esta operación de ahora en adelante. En C #,pure
sería un método con una firma como:bind
/flatmap
toma un valor monádico (M<A>
) y una funciónf
.f
toma un valor puro y devuelve un valor monádico (M<B>
). De estos,bind
produce un nuevo valor monádico (M<B>
).bind
tiene la siguiente firma de C #:Además, para ser una mónada,
pure
ybind
deben obedecer las tres leyes de la mónada.Ahora, una forma de modelar mónadas en C # sería construir una interfaz:
(Nota: para mantener las cosas breves y expresivas, me tomaré algunas libertades con el código a lo largo de esta respuesta).
Ahora podemos implementar mónadas para tipos de datos concretos implementando implementaciones concretas de
Monad<M>
. Por ejemplo, podríamos implementar la siguiente mónada paraIEnumerable
:(Estoy usando la sintaxis LINQ a propósito para llamar la relación entre la sintaxis LINQ y las mónadas. Pero tenga en cuenta que podríamos reemplazar la consulta LINQ con una llamada a
SelectMany
).Ahora, ¿podemos definir una mónada para
IObservable
? Parecería que sí:Para estar seguros de que tenemos una mónada, necesitamos probar las leyes de la mónada. Esto puede no ser trivial (y no estoy lo suficientemente familiarizado con Rx.NET para saber si incluso se puede probar solo desde la especificación), pero es un comienzo prometedor. Para facilitar el resto de esta discusión, supongamos que las leyes de mónada se mantienen en este caso.
Mónadas Gratis
No existe una singular "mónada libre". Más bien, las mónadas gratuitas son una clase de mónadas que se construyen a partir de functores. Es decir, dado un functor
F
, podemos derivar automáticamente una mónada paraF
(es decir, la mónada libre deF
).Functores
Al igual que las mónadas, los functores se pueden definir mediante los siguientes tres elementos:
Dos operaciones:
pure
envuelve un valor puro en el functor. Esto es análogo apure
para una mónada. De hecho, para los functors que también son mónadas, los dos deberían ser idénticos.fmap
asigna valores en la entrada a nuevos valores en la salida a través de una función dada. Su firma es:Al igual que las mónadas, los functores deben obedecer las leyes de los functores.
De manera similar a las mónadas, podemos modelar functores a través de la siguiente interfaz:
Ahora, dado que las mónadas son una subclase de functores, también podríamos refactorizar
Monad
un poco:Aquí he agregado un método adicional
join
, y proporcioné implementaciones predeterminadas de ambosjoin
ybind
. Tenga en cuenta, sin embargo, que estas son definiciones circulares. Por lo tanto, tendría que anular al menos uno u otro. Además, tenga en cuenta quepure
ahora se hereda deFunctor
.IObservable
y mónadas gratisAhora, dado que hemos definido una mónada para
IObservable
y dado que las mónadas son una subclase de functores, se deduce que debemos ser capaces de definir una instancia de functor paraIObservable
. Aquí hay una definición:Ahora que tenemos un functor definido
IObservable
, podemos construir una mónada libre a partir de ese functor. Y así es precisamente cómo seIObservable
relaciona con las mónadas libres, es decir, a partir de lo cual podemos construir una mónada libreIObservable
.fuente