Distancia más corta entre un punto y un segmento de línea

360

Necesito una función básica para encontrar la distancia más corta entre un punto y un segmento de línea. Siéntase libre de escribir la solución en el idioma que desee; Puedo traducirlo a lo que estoy usando (Javascript).

EDITAR: Mi segmento de línea está definido por dos puntos finales. Entonces mi segmento de línea ABestá definido por los dos puntos A (x1,y1)y B (x2,y2). Estoy tratando de encontrar la distancia entre este segmento de línea y un punto C (x3,y3). Mis habilidades de geometría están oxidadas, por lo que los ejemplos que he visto son confusos, lamento admitirlo.

Eli Courtwright
fuente
No sé cómo estás representando líneas y puntos, pero aquí están todas las matemáticas que necesitas para comenzar. No debería ser demasiado difícil entender lo que necesitas hacer.
mandaleeka
44
@ArthurKalliokoski: ese enlace está muerto, pero encontré una copia: paulbourke.net/geometry/pointline
Gunther Struyf
11
@GuntherStruyf: ese enlace también está muerto, pero este enlace similar funciona: paulbourke.net/geometry/pointlineplane
Michael
1
Si alguien busca la distancia entre un punto y una línea, no un punto y una línea SEGMENTO, consulte este enlace: gist.github.com/rhyolight/2846020
Nick Budden
1
El enlace de arriba está muerto. Aquí hay una muestra de pseudocódigo y c ++, explicada y derivada como se detalla en un libro de texto, geomalgorithms.com/a02-_lines.html
Eric

Respuestas:

448

Eli, el código que has establecido es incorrecto. Un punto cerca de la línea en la que se encuentra el segmento pero lejos de un extremo del segmento se juzgaría incorrectamente cerca del segmento. Actualización: la respuesta incorrecta mencionada ya no es la aceptada.

Aquí hay un código correcto, en C ++. Presume un vector de clase 2D class vec2 {float x,y;}, esencialmente, con operadores para sumar, restar, escalar, etc., y una función de producto de distancia y punto (es decir x1 x2 + y1 y2).

float minimum_distance(vec2 v, vec2 w, vec2 p) {
  // Return minimum distance between line segment vw and point p
  const float l2 = length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  if (l2 == 0.0) return distance(p, v);   // v == w case
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line. 
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  // We clamp t from [0,1] to handle points outside the segment vw.
  const float t = max(0, min(1, dot(p - v, w - v) / l2));
  const vec2 projection = v + t * (w - v);  // Projection falls on the segment
  return distance(p, projection);
}

EDITAR: necesitaba una implementación de Javascript, así que aquí está, sin dependencias (o comentarios, pero es un puerto directo de lo anterior). Los puntos se representan como objetos con xy yatributos.

function sqr(x) { return x * x }
function dist2(v, w) { return sqr(v.x - w.x) + sqr(v.y - w.y) }
function distToSegmentSquared(p, v, w) {
  var l2 = dist2(v, w);
  if (l2 == 0) return dist2(p, v);
  var t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
  t = Math.max(0, Math.min(1, t));
  return dist2(p, { x: v.x + t * (w.x - v.x),
                    y: v.y + t * (w.y - v.y) });
}
function distToSegment(p, v, w) { return Math.sqrt(distToSegmentSquared(p, v, w)); }

EDIT 2: necesitaba una versión de Java, pero más importante, la necesitaba en 3d en lugar de 2d.

float dist_to_segment_squared(float px, float py, float pz, float lx1, float ly1, float lz1, float lx2, float ly2, float lz2) {
  float line_dist = dist_sq(lx1, ly1, lz1, lx2, ly2, lz2);
  if (line_dist == 0) return dist_sq(px, py, pz, lx1, ly1, lz1);
  float t = ((px - lx1) * (lx2 - lx1) + (py - ly1) * (ly2 - ly1) + (pz - lz1) * (lz2 - lz1)) / line_dist;
  t = constrain(t, 0, 1);
  return dist_sq(px, py, pz, lx1 + t * (lx2 - lx1), ly1 + t * (ly2 - ly1), lz1 + t * (lz2 - lz1));
}
Grumdrig
fuente
1
He agregado una versión desarrollada de esto como una respuesta separada.
M Katz
44
Gracias @Grumdrig, su solución de JavaScript fue perfecta y un gran ahorro de tiempo. Porté su solución a Objective-C y la agregué a continuación.
awolf
1
Realmente solo estamos tratando de evitar una división por cero allí.
Grumdrig el
99
La proyección del punto pen una línea es el punto en la línea más cercana a p. (Y una perpendicular a la línea a la proyección pasará a través p). El número tes hasta qué punto a lo largo del segmento de línea de va wque la proyección cae. Entonces, si tes 0, la proyección cae directamente v; si es 1, está encendido w; si es 0.5, por ejemplo, entonces está a medio camino. Si tes menor que 0 o mayor que 1, cae en la línea más allá de un extremo u otro del segmento. En ese caso, la distancia al segmento será la distancia al extremo más cercano.
Grumdrig
1
¡Vaya! No noté que alguien había suministrado una versión en 3D. @RogiSolorzano, primero deberá convertir las coordenadas largas y largas en coordenadas x, y, z en 3 espacios.
Grumdrig
112

Aquí está el código completo más simple en Javascript.

x, y es su punto objetivo y x1, y1 a x2, y2 es su segmento de línea.

ACTUALIZADO: se corrigió el problema de la línea de longitud 0 de los comentarios.

function pDistance(x, y, x1, y1, x2, y2) {

  var A = x - x1;
  var B = y - y1;
  var C = x2 - x1;
  var D = y2 - y1;

  var dot = A * C + B * D;
  var len_sq = C * C + D * D;
  var param = -1;
  if (len_sq != 0) //in case of 0 length line
      param = dot / len_sq;

  var xx, yy;

  if (param < 0) {
    xx = x1;
    yy = y1;
  }
  else if (param > 1) {
    xx = x2;
    yy = y2;
  }
  else {
    xx = x1 + param * C;
    yy = y1 + param * D;
  }

  var dx = x - xx;
  var dy = y - yy;
  return Math.sqrt(dx * dx + dy * dy);
}

Imagen para ayudar a visualizar la solución.

Joshua
fuente
8
De todo el código que he visto para resolver este problema, este me gusta más. Es muy claro y fácil de leer. Sin embargo, las matemáticas detrás de esto son un poco místicas. ¿Qué representa realmente el producto punto dividido por la longitud al cuadrado, por ejemplo?
user1815201
2
El producto de punto dividido por la longitud al cuadrado le da la distancia de proyección desde (x1, y1). Esta es la fracción de la línea a la que el punto (x, y) está más cerca. Observe la última cláusula else donde se calcula (xx, yy): esta es la proyección del punto (x, y) en el segmento (x1, y1) - (x2, y2).
Recogida de Logan
44
La comprobación de segmentos de línea de longitud 0 está demasiado abajo en el código. 'len_sq' será cero y el código se dividirá por 0 antes de llegar al control de seguridad.
HostedMetrics.com
17
Metros Se devuelve en metros.
Joshua
1
@nevermind, llamemos a nuestro punto p0 y a los puntos que definen la línea como p1 y p2. Luego obtienes los vectores A = p0 - p1 y B = p2 - p1. Param es el valor escalar que cuando se multiplica por B te da el punto en la línea más cercana a p0. Si param <= 0, el punto más cercano es p1. Si param> = 1, el punto más cercano es p1. Si está entre 0 y 1, está en algún lugar entre p1 y p2, por lo que interpolamos. XX e YY es entonces el punto más cercano en el segmento de línea, dx / dy es el vector desde p0 hasta ese punto, y finalmente devolvemos la longitud de ese vector.
Sean
70

Esta es una implementación hecha para SEGMENTOS DE LÍNEA FINITA, no líneas infinitas como la mayoría de las otras funciones aquí parecen ser (es por eso que hice esto).

Implementación de la teoría por Paul Bourke .

Pitón:

def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
    px = x2-x1
    py = y2-y1

    norm = px*px + py*py

    u =  ((x3 - x1) * px + (y3 - y1) * py) / float(norm)

    if u > 1:
        u = 1
    elif u < 0:
        u = 0

    x = x1 + u * px
    y = y1 + u * py

    dx = x - x3
    dy = y - y3

    # Note: If the actual distance does not matter,
    # if you only want to compare what this function
    # returns to other results of this function, you
    # can just return the squared distance instead
    # (i.e. remove the sqrt) to gain a little performance

    dist = (dx*dx + dy*dy)**.5

    return dist

AS3:

public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
    var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
    var something:Number = p2.x*p2.x + p2.y*p2.y;
    var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;

    if (u > 1)
        u = 1;
    else if (u < 0)
        u = 0;

    var x:Number = segA.x + u * p2.x;
    var y:Number = segA.y + u * p2.y;

    var dx:Number = x - p.x;
    var dy:Number = y - p.y;

    var dist:Number = Math.sqrt(dx*dx + dy*dy);

    return dist;
}

Java

private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
    {
        float px=x2-x1;
        float py=y2-y1;
        float temp=(px*px)+(py*py);
        float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
        if(u>1){
            u=1;
        }
        else if(u<0){
            u=0;
        }
        float x = x1 + u * px;
        float y = y1 + u * py;

        float dx = x - x3;
        float dy = y - y3;
        double dist = Math.sqrt(dx*dx + dy*dy);
        return dist;

    }
quano
fuente
2
Lo siento, pero intenté esto y todavía me da los resultados como si la línea se extendiera hasta el infinito. Sin embargo, he encontrado la respuesta de Grumdig al trabajo.
Frederik
1
En ese caso, lo está usando mal o significa algo diferente con no infinito. Vea un ejemplo de este código aquí: boomie.se/upload/Drawdebug.swf
quano
Parece un error en el código o algo así, obtengo el mismo resultado que Frederik /
Kromster
30
La elección de nombres de variables está lejos de ser buena (p2, algo, u, ...)
miguelSantirso
2
Probé la versión Python de la función y descubrí que muestra resultados incorrectos si los parámetros son enteros. distAnother(0, 0, 4, 0, 2, 2)da 2.8284271247461903 (incorrecto). distAnother(0., 0., 4., 0., 2., 2.)da 2.0 (correcto). Tenga en cuenta esto. Creo que el código se puede mejorar para tener conversión flotante en alguna parte.
Vladimir Obrizan
22

En mi propio hilo de preguntas, ¿cómo calcular la distancia 2D más corta entre un punto y un segmento de línea en todos los casos en C, C # / .NET 2.0 o Java? Me pidieron que pusiera una respuesta de C # aquí cuando encuentro una: así que aquí está, modificada de http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static :

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

No estoy para responder pero hacer preguntas, así que espero no obtener millones de votos por algunas razones, sino por construir críticas. Solo quería (y me animaron) compartir las ideas de otra persona, ya que las soluciones en este hilo son con un lenguaje exótico (Fortran, Mathematica) o etiquetados como defectuosos por alguien. El único útil (por Grumdrig) para mí está escrito con C ++ y nadie lo etiquetó como defectuoso. Pero faltan los métodos (punto, etc.) que se llaman.

char m
fuente
1
Gracias por publicar esto. Pero parece que hay una optimización obvia posible en el último método: no calcule dist hasta después de que se determine que es necesario.
RenniePet
2
El comentario sobre DotProduct dice que está computando AB.AC, pero está computando AB.BC.
Metal450
El producto cruzado por definición devuelve un vector pero devuelve un escalar aquí.
SteakOverflow
21

En F #, la distancia desde el punto cal segmento de línea entre ay bestá dada por:

let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
  let d = b - a
  let s = d.Length
  let lambda = (c - a) * d / s
  let p = (lambda |> max 0.0 |> min s) * d / s
  (a + p - c).Length

El vector dapunta desde aa lo blargo del segmento de línea. El producto punto de d/swith c-ada el parámetro del punto de aproximación más cercano entre la línea infinita y el punto c. La función miny maxse utiliza para sujetar este parámetro al rango de 0..smodo que el punto se encuentre entre ay b. Finalmente, la longitud de a+p-ces la distancia desde cel punto más cercano en el segmento de línea.

Ejemplo de uso:

pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
Jon Harrop
fuente
1
Creo que la última línea es incorrecta, y debería leer:(a + p - c).Length
Blair Holloway
Eso todavía no soluciona completamente el problema. Una forma de corregir la función sería redefinir lambday pcomo let lambda = (c - a) * d / (s * s)y let p = a + (lambda |> max 0.0 |> min 1.0) * d, respectivamente. Después de que la función devuelve correcta distancia por ejemplo, para el caso en que a = (0,1), b = (1,0)y c = (1,1).
mikkoma
20

Para cualquier persona interesada, aquí hay una conversión trivial del código Javascript de Joshua a Objective-C:

- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    double dx = p.x - xx;
    double dy = p.y - yy;

    return sqrtf(dx * dx + dy * dy);
}

Necesitaba esta solución para trabajar, MKMapPointasí que la compartiré en caso de que alguien más la necesite. Solo algunos cambios menores y esto devolverá la distancia en metros:

- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}
Ben Gotow
fuente
Esto parece funcionar bien para mí. Gracias por la conversión.
Gregir
Vale la pena notar que (xx, yy) es la ubicación del punto más cercano. He editado un poco su código, por lo que devuelve tanto el punto como la distancia, los nombres refactorizados para que describan qué es qué y proporcionó un ejemplo en: stackoverflow.com/a/28028023/849616 .
Vive el
20

En Mathematica

Utiliza una descripción paramétrica del segmento y proyecta el punto en la línea definida por el segmento. A medida que el parámetro va de 0 a 1 en el segmento, si la proyección está fuera de estos límites, calculamos la distancia al punto correspondiente, en lugar de la línea recta normal al segmento.

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

Resultado del trazado:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

texto alternativo

Trace esos puntos más cerca que una distancia de corte :

texto alternativo

Dibujo de contorno:

ingrese la descripción de la imagen aquí

Dr. belisarius
fuente
11

Hola, acabo de escribir esto ayer. Está en Actionscript 3.0, que es básicamente Javascript, aunque es posible que no tenga la misma clase Point.

//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.  
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
    var nearestPt:Point; //closest point on seqment to pt

    var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
    var bLenSq:Number = dot( b, b ); //Segment length squared

    if( keyDot <= 0 )  //pt is "behind" st, use st
    {
        nearestPt = st  
    }
    else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
    {
        nearestPt = st.add(b);
    }
    else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
    {
        var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
        var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
        nearestPt = st.add(partOfB);
    }

    var dist:Number = (pt.subtract(nearestPt)).length;

    return dist;
}

Además, aquí hay una discusión bastante completa y legible del problema: notejot.com

Matt W
fuente
Gracias, este es exactamente el tipo de código que estaba buscando. Publiqué mi propia respuesta a continuación, ya que logré armar algo que funciona en Javascript de navegador de la era actual, pero marqué su respuesta como aceptada porque es simple, bien escrita, fácil de entender, y muy apreciado
Eli Courtwright
¿No le falta al método punto? En cualquier caso, es fácil de calcular: vec1.x * vec2.x + vec1.y * vec2.y
quano
11

Para los perezosos, aquí está mi puerto Objective-C de la solución de @ Grumdrig anterior:

CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
    CGFloat l2 = dist2(v, w);
    if (l2 == 0.0f) return dist2(p, v);

    CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0.0f) return dist2(p, v);
    if (t > 1.0f) return dist2(p, w);
    return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
    return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
3 revoluciones
fuente
Me devuelven 'nan' de esta línea. ¿Alguna idea de por qué? (¡Por cierto, gracias por escribir esto en Obj-C!) return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)))
Gregir
sqrtf () está cuadrando x, no obtiene su raíz cuadrada
Senseful 05 de
@Senseful No estoy seguro de lo que quieres decir. sqrtf es raíz cuadrada. developer.apple.com/library/mac/documentation/Darwin/Reference/…
awolf
@awolf: Echa un vistazo a la primera línea de código anterior. Define el método sqrtf(x) = x*x.
Sentido
@ Muchas gracias, se le dio un nombre incorrecto en lugar de realizar una operación incorrecta.
awolf
10

No pude resistir la codificación en python :)

from math import sqrt, fabs
def pdis(a, b, c):
    t = b[0]-a[0], b[1]-a[1]           # Vector ab
    dd = sqrt(t[0]**2+t[1]**2)         # Length of ab
    t = t[0]/dd, t[1]/dd               # unit vector of ab
    n = -t[1], t[0]                    # normal unit vector to ab
    ac = c[0]-a[0], c[1]-a[1]          # vector ac
    return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)

print pdis((1,1), (2,2), (2,0))        # Example (answer is 1.414)


Lo mismo para fortran :)

real function pdis(a, b, c)
    real, dimension(0:1), intent(in) :: a, b, c
    real, dimension(0:1) :: t, n, ac
    real :: dd
    t = b - a                          ! Vector ab
    dd = sqrt(t(0)**2+t(1)**2)         ! Length of ab
    t = t/dd                           ! unit vector of ab
    n = (/-t(1), t(0)/)                ! normal unit vector to ab
    ac = c - a                         ! vector ac
    pdis = abs(ac(0)*n(0)+ac(1)*n(1))  ! Projection of ac to n (the minimum distance)
end function pdis


program test
    print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/))   ! Example (answer is 1.414)
end program test
cyberthanasis
fuente
10
¿No está calculando la distancia de un punto a una línea en lugar del segmento?
balint.miklos
66
De hecho, esta es la distancia a la línea en la que se encuentra el segmento, no al segmento.
Grumdrig el
12
Esto no parece funcionar. Si tiene un segmento de (0,0) y (5,0) e intenta contra el punto (7,0), devolverá 0, lo cual no es cierto. La distancia debe ser 2.
Quano
8
No ha considerado el caso en el que la proyección del punto en el segmento está fuera del intervalo de A a B. Eso podría ser lo que quería el interrogador, pero no lo que preguntó.
phkahler
55
Esto no es lo que se pidió originalmente.
Sambatyon
10

Aquí hay una ortografía más completa de la solución de Grumdrig. Esta versión también devuelve el punto más cercano.

#include "stdio.h"
#include "math.h"

class Vec2
{
public:
    float _x;
    float _y;

    Vec2()
    {
        _x = 0;
        _y = 0;
    }

    Vec2( const float x, const float y )
    {
        _x = x;
        _y = y;
    }

    Vec2 operator+( const Vec2 &v ) const
    {
        return Vec2( this->_x + v._x, this->_y + v._y );
    }

    Vec2 operator-( const Vec2 &v ) const
    {
        return Vec2( this->_x - v._x, this->_y - v._y );
    }

    Vec2 operator*( const float f ) const
    {
        return Vec2( this->_x * f, this->_y * f );
    }

    float DistanceToSquared( const Vec2 p ) const
    {
        const float dX = p._x - this->_x;
        const float dY = p._y - this->_y;

        return dX * dX + dY * dY;
    }

    float DistanceTo( const Vec2 p ) const
    {
        return sqrt( this->DistanceToSquared( p ) );
    }

    float DotProduct( const Vec2 p ) const
    {
        return this->_x * p._x + this->_y * p._y;
    }
};

// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
    const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
    if ( distSq == 0.0 )
    {
        // v == w case
        (*q) = v;

        return v.DistanceTo( p );
    }

    // consider the line extending the segment, parameterized as v + t (w - v)
    // we find projection of point p onto the line
    // it falls where t = [(p-v) . (w-v)] / |w-v|^2

    const float t = ( p - v ).DotProduct( w - v ) / distSq;
    if ( t < 0.0 )
    {
        // beyond the v end of the segment
        (*q) = v;

        return v.DistanceTo( p );
    }
    else if ( t > 1.0 )
    {
        // beyond the w end of the segment
        (*q) = w;

        return w.DistanceTo( p );
    }

    // projection falls on the segment
    const Vec2 projection = v + ( ( w - v ) * t );

    (*q) = projection;

    return p.DistanceTo( projection );
}

float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
    Vec2 q;

    float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );

    (*qX) = q._x;
    (*qY) = q._y;

    return distance;
}

void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
    float qX;
    float qY;
    float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
    printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
            segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}

void TestDistanceFromLineSegmentToPoint()
{
    TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}
M Katz
fuente
Gracias por publicar esto. Muy bien estructurado, comentado y formateado, casi me hizo olvidar lo mucho que no me gusta C ++. He usado esto para hacer una versión correspondiente de C #, que ahora he publicado aquí.
RenniePet
10

Solución de una línea usando arcotangentes:

La idea es mover A a (0, 0) y rotar el triángulo en el sentido de las agujas del reloj para que C quede en el eje X, cuando esto suceda, By será la distancia.

  1. un ángulo = Atan (Cy - Ay, Cx - Ax);
  2. ángulo b = Atan (By - Ay, Bx - Ax);
  3. Longitud AB = Sqrt ((Bx - Ax) ^ 2 + (Por - Ay) ^ 2)
  4. Por = Sin (bAngle - aAngle) * ABLength

C#

public double Distance(Point a, Point b, Point c)
{
    // normalize points
    Point cn = new Point(c.X - a.X, c.Y - a.Y);
    Point bn = new Point(b.X - a.X, b.Y - a.Y);

    double angle = Math.Atan2(bn.Y, bn.X) - Math.Atan2(cn.Y, cn.X);
    double abLength = Math.Sqrt(bn.X*bn.X + bn.Y*bn.Y);

    return Math.Sin(angle)*abLength;
}

Una línea C # (para convertir a SQL)

double distance = Math.Sin(Math.Atan2(b.Y - a.Y, b.X - a.X) - Math.Atan2(c.Y - a.Y, c.X - a.X)) * Math.Sqrt((b.X - a.X) * (b.X - a.X) + (b.Y - a.Y) * (b.Y - a.Y))
ADOConnection
fuente
7

Considere esta modificación a la respuesta de Grumdrig anterior. Muchas veces encontrará que la imprecisión de coma flotante puede causar problemas. Estoy usando dobles en la versión a continuación, pero puedes cambiar fácilmente a flotantes. La parte importante es que utiliza un épsilon para manejar el "descuido". Además, muchas veces querrá saber DÓNDE sucedió la intersección, o si sucedió en absoluto. Si la t devuelta es <0.0 o> 1.0, no se produjo colisión. Sin embargo, incluso si no se produjo una colisión, muchas veces querrá saber dónde está el punto más cercano en el segmento a P, y por lo tanto uso qx y qy para devolver esta ubicación.

double PointSegmentDistanceSquared( double px, double py,
                                    double p1x, double p1y,
                                    double p2x, double p2y,
                                    double& t,
                                    double& qx, double& qy)
{
    static const double kMinSegmentLenSquared = 0.00000001;  // adjust to suit.  If you use float, you'll probably want something like 0.000001f
    static const double kEpsilon = 1.0E-14;  // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
    double dx = p2x - p1x;
    double dy = p2y - p1y;
    double dp1x = px - p1x;
    double dp1y = py - p1y;
    const double segLenSquared = (dx * dx) + (dy * dy);
    if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
    {
        // segment is a point.
        qx = p1x;
        qy = p1y;
        t = 0.0;
        return ((dp1x * dp1x) + (dp1y * dp1y));
    }
    else
    {
        // Project a line from p to the segment [p1,p2].  By considering the line
        // extending the segment, parameterized as p1 + (t * (p2 - p1)),
        // we find projection of point p onto the line. 
        // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
        t = ((dp1x * dx) + (dp1y * dy)) / segLenSquared;
        if (t < kEpsilon)
        {
            // intersects at or to the "left" of first segment vertex (p1x, p1y).  If t is approximately 0.0, then
            // intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t > -kEpsilon)
            {
                // intersects at 1st segment vertex
                t = 0.0;
            }
            // set our 'intersection' point to p1.
            qx = p1x;
            qy = p1y;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
        }
        else if (t > (1.0 - kEpsilon))
        {
            // intersects at or to the "right" of second segment vertex (p2x, p2y).  If t is approximately 1.0, then
            // intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t < (1.0 + kEpsilon))
            {
                // intersects at 2nd segment vertex
                t = 1.0;
            }
            // set our 'intersection' point to p2.
            qx = p2x;
            qy = p2y;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then qx would be (p1x + (t * dx)) and qy would be (p1y + (t * dy)).
        }
        else
        {
            // The projection of the point to the point on the segment that is perpendicular succeeded and the point
            // is 'within' the bounds of the segment.  Set the intersection point as that projected point.
            qx = p1x + (t * dx);
            qy = p1y + (t * dy);
        }
        // return the squared distance from p to the intersection point.  Note that we return the squared distance
        // as an optimization because many times you just need to compare relative distances and the squared values
        // works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
        double dpqx = px - qx;
        double dpqy = py - qy;
        return ((dpqx * dpqx) + (dpqy * dpqy));
    }
}
devnullicus
fuente
6

Supongo que quieres encontrar el más cortodistancia entre el punto y un segmento de línea; para hacer esto, necesita encontrar la línea (línea A) que es perpendicular a su segmento de línea (línea B) que pasa por su punto, determine la intersección entre esa línea (línea A) y su línea que pasa por su segmento de línea (línea B) ; si ese punto está entre los dos puntos de su segmento de línea, entonces la distancia es la distancia entre su punto y el punto que acaba de encontrar, que es la intersección de la línea A y la línea B; si el punto no está entre los dos puntos de su segmento de línea, debe obtener la distancia entre su punto y el más cercano de los dos extremos del segmento de línea; esto se puede hacer fácilmente tomando la distancia cuadrada (para evitar una raíz cuadrada) entre el punto y los dos puntos del segmento de línea; el que esté más cerca, toma la raíz cuadrada de ese.

Paul Sonier
fuente
6

La implementación de C ++ / JavaScript de Grumdrig fue muy útil para mí, por lo que proporcioné un puerto directo de Python que estoy usando. El código completo está aquí .

class Point(object):
  def __init__(self, x, y):
    self.x = float(x)
    self.y = float(y)

def square(x):
  return x * x

def distance_squared(v, w):
  return square(v.x - w.x) + square(v.y - w.y)

def distance_point_segment_squared(p, v, w):
  # Segment length squared, |w-v|^2
  d2 = distance_squared(v, w) 
  if d2 == 0: 
    # v == w, return distance to v
    return distance_squared(p, v)
  # Consider the line extending the segment, parameterized as v + t (w - v).
  # We find projection of point p onto the line.
  # It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
  if t < 0:
    # Beyond v end of the segment
    return distance_squared(p, v)
  elif t > 1.0:
    # Beyond w end of the segment
    return distance_squared(p, w)
  else:
    # Projection falls on the segment.
    proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
    # print proj.x, proj.y
    return distance_squared(p, proj)
lana
fuente
5

Código de Matlab, con "autocomprobación" incorporada si llaman a la función sin argumentos:

function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )

if( nargin < 3 )
    selfTest();
    r=0;
else
    vx = xy0(1)-xyP(1);
    vy = xy0(2)-xyP(2);
    ux = xy1(1)-xy0(1);
    uy = xy1(2)-xy0(2);
    lenSqr= (ux*ux+uy*uy);
    detP= -vx*ux + -vy*uy;

    if( detP < 0 )
        r = norm(xy0-xyP,2);
    elseif( detP > lenSqr )
        r = norm(xy1-xyP,2);
    else
        r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
    end
end


    function selfTest()
        %#ok<*NASGU>
        disp(['invalid args, distPointToLineSegment running (recursive)  self-test...']);

        ptA = [1;1]; ptB = [-1;-1];
        ptC = [1/2;1/2];  % on the line
        ptD = [-2;-1.5];  % too far from line segment
        ptE = [1/2;0];    % should be same as perpendicular distance to line
        ptF = [1.5;1.5];      % along the A-B but outside of the segment

        distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
        distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
        distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
        distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
        figure(1); clf;
        circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
            'Curvature', [1 1], 'EdgeColor', c);
        plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
        plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
        plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
        plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
        plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
        hold off;
        axis([-3 3 -3 3]); axis equal;
    end

end
peter karasev
fuente
Gracias, este código de Matlab calcula la distancia más corta a la línea SEGMENTO y no la distancia a la línea infinita en la que se encuentra el segmento.
Rudolf Meijering
4

Y ahora mi solución también ...... (Javascript)

Es muy rápido porque trato de evitar cualquier función Math.pow.

Como puede ver, al final de la función tengo la distancia de la línea.

el código es de la biblioteca http://www.draw2d.org/graphiti/jsdoc/#!/example

/**
 * Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
 * A simple hit test.
 * 
 * @return {boolean}
 * @static
 * @private
 * @param {Number} coronaWidth the accepted corona for the hit test
 * @param {Number} X1 x coordinate of the start point of the line
 * @param {Number} Y1 y coordinate of the start point of the line
 * @param {Number} X2 x coordinate of the end point of the line
 * @param {Number} Y2 y coordinate of the end point of the line
 * @param {Number} px x coordinate of the point to test
 * @param {Number} py y coordinate of the point to test
 **/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1,  X2,  Y2, px, py)
{
  // Adjust vectors relative to X1,Y1
  // X2,Y2 becomes relative vector from X1,Y1 to end of segment
  X2 -= X1;
  Y2 -= Y1;
  // px,py becomes relative vector from X1,Y1 to test point
  px -= X1;
  py -= Y1;
  var dotprod = px * X2 + py * Y2;
  var projlenSq;
  if (dotprod <= 0.0) {
      // px,py is on the side of X1,Y1 away from X2,Y2
      // distance to segment is length of px,py vector
      // "length of its (clipped) projection" is now 0.0
      projlenSq = 0.0;
  } else {
      // switch to backwards vectors relative to X2,Y2
      // X2,Y2 are already the negative of X1,Y1=>X2,Y2
      // to get px,py to be the negative of px,py=>X2,Y2
      // the dot product of two negated vectors is the same
      // as the dot product of the two normal vectors
      px = X2 - px;
      py = Y2 - py;
      dotprod = px * X2 + py * Y2;
      if (dotprod <= 0.0) {
          // px,py is on the side of X2,Y2 away from X1,Y1
          // distance to segment is length of (backwards) px,py vector
          // "length of its (clipped) projection" is now 0.0
          projlenSq = 0.0;
      } else {
          // px,py is between X1,Y1 and X2,Y2
          // dotprod is the length of the px,py vector
          // projected on the X2,Y2=>X1,Y1 vector times the
          // length of the X2,Y2=>X1,Y1 vector
          projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
      }
  }
    // Distance to line is now the length of the relative point
    // vector minus the length of its projection onto the line
    // (which is zero if the projection falls outside the range
    //  of the line segment).
    var lenSq = px * px + py * py - projlenSq;
    if (lenSq < 0) {
        lenSq = 0;
    }
    return Math.sqrt(lenSq)<coronaWidth;
};
usuario1397870
fuente
4

codificado en t-sql

el punto es (@px, @py) y el segmento de línea va desde (@ax, @ay) a (@bx, @by)

create function fn_sqr (@NumberToSquare decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @Result decimal(18,10)
    set @Result = @NumberToSquare * @NumberToSquare
    return @Result
end
go

create function fn_Distance(@ax decimal (18,10) , @ay decimal (18,10), @bx decimal(18,10),  @by decimal(18,10)) 
returns decimal(18,10)
as
begin
    declare @Result decimal(18,10)
    set @Result = (select dbo.fn_sqr(@ax - @bx) + dbo.fn_sqr(@ay - @by) )
    return @Result
end
go

create function fn_DistanceToSegmentSquared(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    declare @l2 decimal(18,10)
    set @l2 = (select dbo.fn_Distance(@ax, @ay, @bx, @by))
    if @l2 = 0
        return dbo.fn_Distance(@px, @py, @ax, @ay)
    declare @t decimal(18,10)
    set @t = ((@px - @ax) * (@bx - @ax) + (@py - @ay) * (@by - @ay)) / @l2
    if (@t < 0) 
        return dbo.fn_Distance(@px, @py, @ax, @ay);
    if (@t > 1) 
        return dbo.fn_Distance(@px, @py, @bx, @by);
    return dbo.fn_Distance(@px, @py,  @ax + @t * (@bx - @ax),  @ay + @t * (@by - @ay))
end
go

create function fn_DistanceToSegment(@px decimal(18,10), @py decimal(18,10), @ax decimal(18,10), @ay decimal(18,10), @bx decimal(18,10), @by decimal(18,10)) 
returns decimal(18,10)
as 
begin
    return sqrt(dbo.fn_DistanceToSegmentSquared(@px, @py , @ax , @ay , @bx , @by ))
end
go

--example execution for distance from a point at (6,1) to line segment that runs from (4,2) to (2,1)
select dbo.fn_DistanceToSegment(6, 1, 4, 2, 2, 1) 
--result = 2.2360679775

--example execution for distance from a point at (-3,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(-3, -2, 0, -2, -2, 1) 
--result = 2.4961508830

--example execution for distance from a point at (0,-2) to line segment that runs from (0,-2) to (-2,1)
select dbo.fn_DistanceToSegment(0,-2, 0, -2, -2, 1) 
--result = 0.0000000000
rob mcnicol
fuente
4

Parece que casi todos los demás en StackOverflow han aportado una respuesta (23 respuestas hasta ahora), así que aquí está mi contribución para C #. Esto se basa principalmente en la respuesta de M. Katz, que a su vez se basa en la respuesta de Grumdrig.

   public struct MyVector
   {
      private readonly double _x, _y;


      // Constructor
      public MyVector(double x, double y)
      {
         _x = x;
         _y = y;
      }


      // Distance from this point to another point, squared
      private double DistanceSquared(MyVector otherPoint)
      {
         double dx = otherPoint._x - this._x;
         double dy = otherPoint._y - this._y;
         return dx * dx + dy * dy;
      }


      // Find the distance from this point to a line segment (which is not the same as from this 
      //  point to anywhere on an infinite line). Also returns the closest point.
      public double DistanceToLineSegment(MyVector lineSegmentPoint1, MyVector lineSegmentPoint2,
                                          out MyVector closestPoint)
      {
         return Math.Sqrt(DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                          out closestPoint));
      }


      // Same as above, but avoid using Sqrt(), saves a new nanoseconds in cases where you only want 
      //  to compare several distances to find the smallest or largest, but don't need the distance
      public double DistanceToLineSegmentSquared(MyVector lineSegmentPoint1, 
                                              MyVector lineSegmentPoint2, out MyVector closestPoint)
      {
         // Compute length of line segment (squared) and handle special case of coincident points
         double segmentLengthSquared = lineSegmentPoint1.DistanceSquared(lineSegmentPoint2);
         if (segmentLengthSquared < 1E-7f)  // Arbitrary "close enough for government work" value
         {
            closestPoint = lineSegmentPoint1;
            return this.DistanceSquared(closestPoint);
         }

         // Use the magic formula to compute the "projection" of this point on the infinite line
         MyVector lineSegment = lineSegmentPoint2 - lineSegmentPoint1;
         double t = (this - lineSegmentPoint1).DotProduct(lineSegment) / segmentLengthSquared;

         // Handle the two cases where the projection is not on the line segment, and the case where 
         //  the projection is on the segment
         if (t <= 0)
            closestPoint = lineSegmentPoint1;
         else if (t >= 1)
            closestPoint = lineSegmentPoint2;
         else 
            closestPoint = lineSegmentPoint1 + (lineSegment * t);
         return this.DistanceSquared(closestPoint);
      }


      public double DotProduct(MyVector otherVector)
      {
         return this._x * otherVector._x + this._y * otherVector._y;
      }

      public static MyVector operator +(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x + rightVector._x, leftVector._y + rightVector._y);
      }

      public static MyVector operator -(MyVector leftVector, MyVector rightVector)
      {
         return new MyVector(leftVector._x - rightVector._x, leftVector._y - rightVector._y);
      }

      public static MyVector operator *(MyVector aVector, double aScalar)
      {
         return new MyVector(aVector._x * aScalar, aVector._y * aScalar);
      }

      // Added using ReSharper due to CodeAnalysis nagging

      public bool Equals(MyVector other)
      {
         return _x.Equals(other._x) && _y.Equals(other._y);
      }

      public override bool Equals(object obj)
      {
         if (ReferenceEquals(null, obj)) return false;
         return obj is MyVector && Equals((MyVector) obj);
      }

      public override int GetHashCode()
      {
         unchecked
         {
            return (_x.GetHashCode()*397) ^ _y.GetHashCode();
         }
      }

      public static bool operator ==(MyVector left, MyVector right)
      {
         return left.Equals(right);
      }

      public static bool operator !=(MyVector left, MyVector right)
      {
         return !left.Equals(right);
      }
   }

Y aquí hay un pequeño programa de prueba.

   public static class JustTesting
   {
      public static void Main()
      {
         Stopwatch stopwatch = new Stopwatch();
         stopwatch.Start();

         for (int i = 0; i < 10000000; i++)
         {
            TestIt(1, 0, 0, 0, 1, 1, 0.70710678118654757);
            TestIt(5, 4, 0, 0, 20, 10, 1.3416407864998738);
            TestIt(30, 15, 0, 0, 20, 10, 11.180339887498949);
            TestIt(-30, 15, 0, 0, 20, 10, 33.541019662496844);
            TestIt(5, 1, 0, 0, 10, 0, 1.0);
            TestIt(1, 5, 0, 0, 0, 10, 1.0);
         }

         stopwatch.Stop();
         TimeSpan timeSpan = stopwatch.Elapsed;
      }


      private static void TestIt(float aPointX, float aPointY, 
                                 float lineSegmentPoint1X, float lineSegmentPoint1Y, 
                                 float lineSegmentPoint2X, float lineSegmentPoint2Y, 
                                 double expectedAnswer)
      {
         // Katz
         double d1 = DistanceFromPointToLineSegment(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(d1 == expectedAnswer);

         /*
         // Katz using squared distance
         double d2 = DistanceFromPointToLineSegmentSquared(new MyVector(aPointX, aPointY), 
                                              new MyVector(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                              new MyVector(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d2 - expectedAnswer * expectedAnswer) < 1E-7f);
          */

         /*
         // Matti (optimized)
         double d3 = FloatVector.DistanceToLineSegment(new PointF(aPointX, aPointY), 
                                                new PointF(lineSegmentPoint1X, lineSegmentPoint1Y), 
                                                new PointF(lineSegmentPoint2X, lineSegmentPoint2Y));
         Debug.Assert(Math.Abs(d3 - expectedAnswer) < 1E-7f);
          */
      }

      private static double DistanceFromPointToLineSegment(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegment(lineSegmentPoint1, lineSegmentPoint2, 
                                             out closestPoint);
      }

      private static double DistanceFromPointToLineSegmentSquared(MyVector aPoint, 
                                             MyVector lineSegmentPoint1, MyVector lineSegmentPoint2)
      {
         MyVector closestPoint;  // Not used
         return aPoint.DistanceToLineSegmentSquared(lineSegmentPoint1, lineSegmentPoint2, 
                                                    out closestPoint);
      }
   }

Como puede ver, traté de medir la diferencia entre usar la versión que evita el método Sqrt () y la versión normal. Mis pruebas indican que tal vez pueda ahorrar alrededor del 2.5%, pero ni siquiera estoy seguro de eso: las variaciones dentro de las diferentes pruebas fueron del mismo orden de magnitud. También intenté medir la versión publicada por Matti (más una optimización obvia), y esa versión parece ser aproximadamente un 4% más lenta que la versión basada en el código Katz / Grumdrig.

Editar: Por cierto, también he intentado medir un método que encuentra la distancia a una línea infinita (no un segmento de línea) usando un producto cruzado (y un Sqrt ()), y es aproximadamente un 32% más rápido.

RenniePet
fuente
3

Aquí está la versión de C ++ de devnullicus convertida a C #. Para mi implementación, necesitaba conocer el punto de intersección y encontré que su solución funcionaba bien.

public static bool PointSegmentDistanceSquared(PointF point, PointF lineStart, PointF lineEnd, out double distance, out PointF intersectPoint)
{
    const double kMinSegmentLenSquared = 0.00000001; // adjust to suit.  If you use float, you'll probably want something like 0.000001f
    const double kEpsilon = 1.0E-14; // adjust to suit.  If you use floats, you'll probably want something like 1E-7f
    double dX = lineEnd.X - lineStart.X;
    double dY = lineEnd.Y - lineStart.Y;
    double dp1X = point.X - lineStart.X;
    double dp1Y = point.Y - lineStart.Y;
    double segLenSquared = (dX * dX) + (dY * dY);
    double t = 0.0;

    if (segLenSquared >= -kMinSegmentLenSquared && segLenSquared <= kMinSegmentLenSquared)
    {
        // segment is a point.
        intersectPoint = lineStart;
        t = 0.0;
        distance = ((dp1X * dp1X) + (dp1Y * dp1Y));
    }
    else
    {
        // Project a line from p to the segment [p1,p2].  By considering the line
        // extending the segment, parameterized as p1 + (t * (p2 - p1)),
        // we find projection of point p onto the line. 
        // It falls where t = [(p - p1) . (p2 - p1)] / |p2 - p1|^2
        t = ((dp1X * dX) + (dp1Y * dY)) / segLenSquared;
        if (t < kEpsilon)
        {
            // intersects at or to the "left" of first segment vertex (lineStart.X, lineStart.Y).  If t is approximately 0.0, then
            // intersection is at p1.  If t is less than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t > -kEpsilon)
            {
                // intersects at 1st segment vertex
                t = 0.0;
            }
            // set our 'intersection' point to p1.
            intersectPoint = lineStart;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
        }
        else if (t > (1.0 - kEpsilon))
        {
            // intersects at or to the "right" of second segment vertex (lineEnd.X, lineEnd.Y).  If t is approximately 1.0, then
            // intersection is at p2.  If t is greater than that, then there is no intersection (i.e. p is not within
            // the 'bounds' of the segment)
            if (t < (1.0 + kEpsilon))
            {
                // intersects at 2nd segment vertex
                t = 1.0;
            }
            // set our 'intersection' point to p2.
            intersectPoint = lineEnd;
            // Note: If you wanted the ACTUAL intersection point of where the projected lines would intersect if
            // we were doing PointLineDistanceSquared, then intersectPoint.X would be (lineStart.X + (t * dx)) and intersectPoint.Y would be (lineStart.Y + (t * dy)).
        }
        else
        {
            // The projection of the point to the point on the segment that is perpendicular succeeded and the point
            // is 'within' the bounds of the segment.  Set the intersection point as that projected point.
            intersectPoint = new PointF((float)(lineStart.X + (t * dX)), (float)(lineStart.Y + (t * dY)));
        }
        // return the squared distance from p to the intersection point.  Note that we return the squared distance
        // as an optimization because many times you just need to compare relative distances and the squared values
        // works fine for that.  If you want the ACTUAL distance, just take the square root of this value.
        double dpqX = point.X - intersectPoint.X;
        double dpqY = point.Y - intersectPoint.Y;

        distance = ((dpqX * dpqX) + (dpqY * dpqY));
    }

    return true;
}
headkaze
fuente
¡¡Funciona de maravilla!! Me salvó incontables horas. ¡¡Muchas gracias!!
Steve Johnson
3

Aquí está usando Swift

    /* Distance from a point (p1) to line l1 l2 */
func distanceFromPoint(p: CGPoint, toLineSegment l1: CGPoint, and l2: CGPoint) -> CGFloat {
    let A = p.x - l1.x
    let B = p.y - l1.y
    let C = l2.x - l1.x
    let D = l2.y - l1.y

    let dot = A * C + B * D
    let len_sq = C * C + D * D
    let param = dot / len_sq

    var xx, yy: CGFloat

    if param < 0 || (l1.x == l2.x && l1.y == l2.y) {
        xx = l1.x
        yy = l1.y
    } else if param > 1 {
        xx = l2.x
        yy = l2.y
    } else {
        xx = l1.x + param * C
        yy = l1.y + param * D
    }

    let dx = p.x - xx
    let dy = p.y - yy

    return sqrt(dx * dx + dy * dy)
}
OzRunways
fuente
3

C#

Adaptado de @Grumdrig

public static double MinimumDistanceToLineSegment(this Point p,
    Line line)
{
    var v = line.StartPoint;
    var w = line.EndPoint;

    double lengthSquared = DistanceSquared(v, w);

    if (lengthSquared == 0.0)
        return Distance(p, v);

    double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
    var projection = v + t * (w - v);

    return Distance(p, projection);
}

public static double Distance(Point a, Point b)
{
    return Math.Sqrt(DistanceSquared(a, b));
}

public static double DistanceSquared(Point a, Point b)
{
    var d = a - b;
    return DotProduct(d, d);
}

public static double DotProduct(Point a, Point b)
{
    return (a.X * b.X) + (a.Y * b.Y);
}
Mateen Ulhaq
fuente
Intenté este código, no parece funcionar correctamente. Parece tener la distancia equivocada algunas veces.
WDUK
3

Una solución 2D y 3D.

Considere un cambio de base tal que el segmento de línea se convierta (0, 0, 0)-(d, 0, 0)y el punto (u, v, 0). La distancia más corta ocurre en ese plano y está dada por

    u ≤ 0 -> d(A, C)
0 ≤ u ≤ d -> |v|
d ≤ u     -> d(B, C)

(la distancia a uno de los puntos finales o a la línea de soporte, dependiendo de la proyección a la línea. El locus de iso-distancia está formado por dos semicírculos y dos segmentos de línea).

ingrese la descripción de la imagen aquí

En la expresión anterior, d es la longitud del segmento AB, y u, v son respectivamente el producto escalar y (módulo del) producto cruzado de AB / d (vector unitario en la dirección de AB) y AC. Por lo tanto, vectorialmente,

AB.AC ≤ 0             -> |AC|
    0 ≤ AB.AC ≤ AB²   -> |ABxAC|/|AB|
          AB² ≤ AB.AC -> |BC|
Yves Daoust
fuente
2

consulte la caja de herramientas GEOMETRÍA de Matlab en el siguiente sitio web: http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html

ctrl + f y escriba "segmento" para buscar funciones relacionadas con el segmento de línea. las funciones "segmento_punto_dist_2d.m" y "segmento_punto_dist_3d.m" son lo que necesita.

Los códigos de GEOMETRÍA están disponibles en una versión C y una versión C ++ y una versión FORTRAN77 y una versión FORTRAN90 y una versión MATLAB.

Lirio
fuente
2

Versión de AutoHotkeys basada en el Javascript de Joshua:

plDist(x, y, x1, y1, x2, y2) {
    A:= x - x1
    B:= y - y1
    C:= x2 - x1
    D:= y2 - y1

    dot:= A*C + B*D
    sqLen:= C*C + D*D
    param:= dot / sqLen

    if (param < 0 || ((x1 = x2) && (y1 = y2))) {
        xx:= x1
        yy:= y1
    } else if (param > 1) {
        xx:= x2
        yy:= y2
    } else {
        xx:= x1 + param*C
        yy:= y1 + param*D
    }

    dx:= x - xx
    dy:= y - yy

    return sqrt(dx*dx + dy*dy)
}
Cronocidio
fuente
2

No vi una implementación de Java aquí, así que traduje la función Javascript de la respuesta aceptada al código Java:

static double sqr(double x) {
    return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
    return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
    double l2 = dist2(v, w);
    if (l2 == 0) return dist2(p, v);
    double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0) return dist2(p, v);
    if (t > 1) return dist2(p, w);
    return dist2(p, new DoublePoint(
            v.x + t * (w.x - v.x),
            v.y + t * (w.y - v.y)
    ));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
    return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
    public double x;
    public double y;

    public DoublePoint(double x, double y) {
        this.x = x;
        this.y = y;
    }
}
Yury Fedorov
fuente
2

Versión WPF:

public class LineSegment
{
    private readonly Vector _offset;
    private readonly Vector _vector;

    public LineSegment(Point start, Point end)
    {
        _offset = (Vector)start;
        _vector = (Vector)(end - _offset);
    }

    public double DistanceTo(Point pt)
    {
        var v = (Vector)pt - _offset;

        // first, find a projection point on the segment in parametric form (0..1)
        var p = (v * _vector) / _vector.LengthSquared;

        // and limit it so it lays inside the segment
        p = Math.Min(Math.Max(p, 0), 1);

        // now, find the distance from that point to our point
        return (_vector * p - v).Length;
    }
}
revs torvin
fuente
1

Aquí está el código que terminé escribiendo. Este código supone que un punto se define en forma de {x:5, y:7}. Tenga en cuenta que esta no es la forma más eficiente, pero es el código más simple y fácil de entender que se me ocurrió.

// a, b, and c in the code below are all points

function distance(a, b)
{
    var dx = a.x - b.x;
    var dy = a.y - b.y;
    return Math.sqrt(dx*dx + dy*dy);
}

function Segment(a, b)
{
    var ab = {
        x: b.x - a.x,
        y: b.y - a.y
    };
    var length = distance(a, b);

    function cross(c) {
        return ab.x * (c.y-a.y) - ab.y * (c.x-a.x);
    };

    this.distanceFrom = function(c) {
        return Math.min(distance(a,c),
                        distance(b,c),
                        Math.abs(cross(c) / length));
    };
}
Eli Courtwright
fuente
1
Este código tiene un error. Un punto cerca de la línea en la que se encuentra el segmento, pero lejos de un extremo del segmento, se consideraría incorrectamente cerca del segmento.
Grumdrig
Interesante, lo investigaré la próxima vez que esté trabajando en esta base de código para confirmar su afirmación. Gracias por el consejo.
Eli Courtwright
1

La función anterior no funciona en líneas verticales. ¡Aquí hay una función que funciona bien! Línea con los puntos p1, p2. y CheckPoint es p;

public float DistanceOfPointToLine2(PointF p1, PointF p2, PointF p)
{
  //          (y1-y2)x + (x2-x1)y + (x1y2-x2y1)
  //d(P,L) = --------------------------------
  //         sqrt( (x2-x1)pow2 + (y2-y1)pow2 )

  double ch = (p1.Y - p2.Y) * p.X + (p2.X - p1.X) * p.Y + (p1.X * p2.Y - p2.X * p1.Y);
  double del = Math.Sqrt(Math.Pow(p2.X - p1.X, 2) + Math.Pow(p2.Y - p1.Y, 2));
  double d = ch / del;
  return (float)d;
}
Dmitry
fuente
No responde la pregunta. Esto solo funciona para líneas (las que se extienden infinitamente en el espacio) no para segmentos de línea (que tienen una longitud finita).
Trinidad
"función anterior" es una referencia ambigua. (Me irrita porque a veces esta respuesta se muestra debajo de mi respuesta.)
RenniePet
1

Aquí es lo mismo que la respuesta de C ++ pero portado a pascal. El orden del parámetro de punto ha cambiado para adaptarse a mi código, pero es lo mismo.

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;
usuario1401452
fuente
Hay varios problemas con esta respuesta: el tipo PointF no se declara (tal vez ese es un tipo estándar en algunas implementaciones de Pascal). Probablemente sea un registro x, y: doble; final; 2. las funciones Distancia y MPower no están declaradas y no hay explicación de lo que hacen (podemos adivinar, sí). 3. La proyección variable se declara pero nunca se usa. En general, eso lo convierte en una respuesta bastante pobre.
dummzeuch