Recuento y suma de secuencias numéricas positivas y negativas.

31

Quiero escribir un código para contar y sumar cualquier serie de números positivos y negativos.
Los números son positivos o negativos (sin cero).
He escrito códigos con forbucles. ¿Hay alguna alternativa creativa?

Datos

R

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

pitón

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007,

     0.002, 0.002, -0.004, 0.015, 0.002, -0.001, -0.008, 0.01, -0.018, 0.046]

bucles

R

sign_indicator <- ifelse(x > 0, 1,-1)
number_of_sequence <- rep(NA, 20)
n <- 1
for (i in 2:20) {
  if (sign_indicator[i] == sign_indicator[i - 1]) {
    n <- n + 1
  } else{
    n <- 1
  }
  number_of_sequence[i] <- n

}
number_of_sequence[1] <- 1

#############################

summation <- rep(NA, 20)

for (i in 1:20) {
  summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
}

pitón

sign_indicator = [1 if i > 0 else -1 for i in X]

number_of_sequence = [1]
N = 1
for i in range(1, len(sign_indicator)):
    if sign_indicator[i] == sign_indicator[i - 1]:
        N += 1
    else:
        N = 1
    number_of_sequence.append(N)

#############################
summation = []

for i in range(len(X)):
    if number_of_sequence[i] == 1:          
          summation.append(X[i])

    else:
        summation.append(sum(X[(i + 1 - number_of_sequence[i]):(i + 1)]))

resultado

        x n_of_sequence    sum
1  -0.010             1 -0.010
2   0.003             1  0.003
3  -0.002             1 -0.002
4   0.018             1  0.018
5   0.002             2  0.020
6   0.006             3  0.026
7  -0.012             1 -0.012
8   0.014             1  0.014
9  -0.017             1 -0.017
10 -0.007             2 -0.024
11  0.002             1  0.002
12  0.002             2  0.004
13 -0.004             1 -0.004
14  0.015             1  0.015
15  0.002             2  0.017
16 -0.001             1 -0.001
17 -0.008             2 -0.009
18  0.010             1  0.010
19 -0.018             1 -0.018
20  0.046             1  0.046
Iman
fuente

Respuestas:

17

Las otras soluciones se ven bien, pero realmente no necesita utilizar funciones de lenguaje sofisticadas o funciones de biblioteca para este simple problema.

result, prev = [], None

for idx, cur in enumerate(x):
    if not prev or (prev > 0) != (cur > 0):
        n, summation = 1, cur
    else:
        n, summation = n + 1, summation + cur
    result.append((idx, cur, n, summation))
    prev = cur

Como puede ver, realmente no necesita una sign_indicatorlista, dos bucles for o rangefunciones como en el fragmento de la sección de preguntas.

Si desea que el índice comience desde 1, use en enumerate(x, 1)lugar deenumerate(x)

Para ver el resultado, puede ejecutar el siguiente código

for idx, num, length, summation in result:
     print(f"{idx: >2d} {num: .3f} {length: >2d} {summation: .3f}")
bombas
fuente
14

En R, puede usar data.tables rleidpara crear grupos con series de números positivas y negativas y luego crear una secuencia de filas en cada grupo y hacer una suma acumulativa de los xvalores.

library(data.table)
df <- data.table(x)
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)), by = rleid(sign(x))]
df

#         x n_of_sequence    sum
# 1: -0.010             1 -0.010
# 2:  0.003             1  0.003
# 3: -0.002             1 -0.002
# 4:  0.018             1  0.018
# 5:  0.002             2  0.020
# 6:  0.006             3  0.026
# 7: -0.012             1 -0.012
# 8:  0.014             1  0.014
# 9: -0.017             1 -0.017
#10: -0.007             2 -0.024
#11:  0.002             1  0.002
#12:  0.002             2  0.004
#13: -0.004             1 -0.004
#14:  0.015             1  0.015
#15:  0.002             2  0.017
#16: -0.001             1 -0.001
#17: -0.008             2 -0.009
#18:  0.010             1  0.010
#19: -0.018             1 -0.018
#20:  0.046             1  0.046

Podemos utilizar rleiden dplyr, así como crear grupos y hacer lo mismo.

library(dplyr)
df %>%
  group_by(gr = data.table::rleid(sign(x))) %>%
  mutate(n_of_sequence = row_number(), sum = cumsum(x))
Ronak Shah
fuente
2
n_of_sequenceno es idéntico al deseado
Iman
@Iman Lo siento, leí mal la salida antes. Lo he corregido ahora.
Ronak Shah
10

Puede calcular las longitudes de ejecución de cada signo usando rlefrom basey hacer algo como esto.

set.seed(0)
z <- round(rnorm(20, sd = 0.02), 3)
run_lengths <- rle(sign(z))$lengths
run_lengths
# [1] 1 1 1 3 1 1 2 2 1 2 2 1 1 1

Llegar n_of_sequence

n_of_sequence <- run_lengths %>% map(seq) %>% unlist
n_of_sequence
# [1] 1 1 1 1 2 3 1 1 1 2 1 2 1 1 2 1 2 1 1 1

Finalmente, para obtener las sumas de las secuencias,

start <- cumsum(c(1,run_lengths))
start <- start[-length(start)] # start points of each series 
map2(start,run_lengths,~cumsum(z[.x:(.x+.y-1)])) %>% unlist()
# [1] -0.010  0.003 -0.002  0.018  0.020  0.026 -0.012  0.014 -0.017 -0.024
# [11]  0.002  0.004 -0.004  0.015  0.017 -0.001 -0.009  0.010 -0.018  0.046
Ameer
fuente
6

Aquí hay una función simple sin bucle en R:

count_and_sum <- function(x)
{
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}

Entonces puedes hacer:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)
count_and_sum(x)
#>         x n    sum
#> 1  -0.010 1 -0.010
#> 2   0.003 1  0.003
#> 3  -0.002 1 -0.002
#> 4   0.018 1  0.018
#> 5   0.002 2  0.020
#> 6   0.006 3  0.026
#> 7  -0.012 1 -0.012
#> 8   0.014 1  0.014
#> 9  -0.017 1 -0.017
#> 10 -0.007 2 -0.024
#> 11  0.002 1  0.002
#> 12  0.002 2  0.004
#> 13 -0.004 1 -0.004
#> 14  0.015 1  0.015
#> 15  0.002 2  0.017
#> 16 -0.001 1 -0.001
#> 17 -0.008 2 -0.009
#> 18  0.010 1  0.010
#> 19 -0.018 1 -0.018
#> 20  0.046 1  0.046

Creado el 16/02/2020 por el paquete reprex (v0.3.0)

Allan Cameron
fuente
5

Aquí hay una tidyversesolución simple ...

library(tidyverse) #or just dplyr and tidyr

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

df <- tibble(x = x) %>% 
  mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
  group_by(seqno) %>%                                  #group by sequences
  mutate(n_of_sequence = row_number(),                 #count row numbers for each group
         sum = cumsum(x)) %>%                          #cumulative sum for each group
  ungroup() %>% 
  select(-seqno)                                       #remove sequence id

df
# A tibble: 20 x 3
        x n_of_sequence     sum
    <dbl>         <int>   <dbl>
 1 -0.01              1 -0.01  
 2  0.003             1  0.003 
 3 -0.002             1 -0.002 
 4  0.018             1  0.018 
 5  0.002             2  0.0200
 6  0.006             3  0.026 
 7 -0.012             1 -0.012 
 8  0.014             1  0.014 
 9 -0.017             1 -0.017 
10 -0.007             2 -0.024 
11  0.002             1  0.002 
12  0.002             2  0.004 
13 -0.004             1 -0.004 
14  0.015             1  0.015 
15  0.002             2  0.017 
16 -0.001             1 -0.001 
17 -0.008             2 -0.009 
18  0.01              1  0.01  
19 -0.018             1 -0.018 
20  0.046             1  0.046 
Andrew Gustar
fuente
5

En cuanto a Python, alguien encontrará una solución usando la biblioteca de pandas. Mientras tanto, aquí hay una propuesta simple:

class Combiner:
    def __init__(self):
        self.index = self.seq_index = self.summation = 0

    def combine(self, value):
        self.index += 1
        if value * self.summation <= 0:
            self.seq_index = 1
            self.summation = value
        else:
            self.seq_index += 1
            self.summation += value
        return self.index, value, self.seq_index, self.summation

c = Combiner()
lst = [c.combine(v) for v in x]

for t in lst:
    print(f"{t[0]:3} {t[1]:7.3f} {t[2]:3} {t[3]:7.3f}")

Salida:

  1  -0.010   1  -0.010
  2   0.003   1   0.003
  3  -0.002   1  -0.002
  4   0.018   1   0.018
  5   0.002   2   0.020
  6   0.006   3   0.026
  7  -0.012   1  -0.012
  8   0.014   1   0.014
  9  -0.017   1  -0.017
 10  -0.007   2  -0.024
 11   0.002   1   0.002
 12   0.002   2   0.004
 13  -0.004   1  -0.004
 14   0.015   1   0.015
 15   0.002   2   0.017
 16  -0.001   1  -0.001
 17  -0.008   2  -0.009
 18   0.010   1   0.010
 19  -0.018   1  -0.018
 20   0.046   1   0.046

Si necesita listas separadas, puede hacer

idxs, vals, seqs, sums = (list(tpl) for tpl in zip(*lst))

o, si los iteradores están bien, simplemente

idxs, vals, seqs, sums = zip(*lst)

(explicación aquí )

Walter Tross
fuente
5

Dos soluciones perezosas diferentes en Python, utilizando el módulo itertools .

Usando itertools.groupby (y acumular)

from itertools import accumulate, groupby

result = (
    item
    for _, group in groupby(x, key=lambda n: n < 0)
    for item in enumerate(accumulate(group), 1)
)

Usando itertools.accumulate con una función de acumulación personalizada

from itertools import accumulate

def sign_count_sum(count_sum, value):
    count, prev_sum = count_sum
    same_sign = (prev_sum < 0) is (value < 0)
    if same_sign:
        return count + 1, prev_sum + value
    else:
        return 1, value

result = accumulate(x, sign_count_sum, initial=(0, 0))
next(result)  # needed to skip the initial (0, 0) item

El initialargumento de la palabra clave se agregó en Python 3.8. En versiones anteriores, puede usar itertools.chainpara anteponer la tupla (0,0):

result = accumulate(chain([(0, 0)], x), sign_count_sum)

El resultado es el esperado:

for (i, v), (c, s) in zip(enumerate(x), result):
    print(f"{i:3} {v:7.3f} {c:3} {s:7.3f}")
  0  -0.010   1  -0.010
  1   0.003   1   0.003
  2  -0.002   1  -0.002
  3   0.018   1   0.018
  4   0.002   2   0.020
  5   0.006   3   0.026
  6  -0.012   1  -0.012
  7   0.014   1   0.014
  8  -0.017   1  -0.017
  9  -0.007   2  -0.024
 10   0.002   1   0.002
 11   0.002   2   0.004
 12  -0.004   1  -0.004
 13   0.015   1   0.015
 14   0.002   2   0.017
 15  -0.001   1  -0.001
 16  -0.008   2  -0.009
 17   0.010   1   0.010
 18  -0.018   1  -0.018
 19   0.046   1   0.046
Schot
fuente
5

Recomiendo R package runner para este tipo de operaciones. streak_run calcula la ocurrencia consecutiva del mismo valor, y sum_run calcula la suma en la ventana cuya longitud se define por kargumento.

Aquí hay solución:

set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

n_of_sequence <- runner::streak_run(x > 0)
sum <- runner::sum_run(x, k = n_of_sequence)

data.frame(x, n_of_sequence, sum)

#         x n_of_sequence    sum
# 1  -0.010             1 -0.010
# 2   0.003             1  0.003
# 3  -0.002             1 -0.002
# 4   0.018             1  0.018
# 5   0.002             2  0.020
# 6   0.006             3  0.026
# 7  -0.012             1 -0.012
# 8   0.014             1  0.014
# 9  -0.017             1 -0.017
# 10 -0.007             2 -0.024
# 11  0.002             1  0.002
# 12  0.002             2  0.004
# 13 -0.004             1 -0.004
# 14  0.015             1  0.015
# 15  0.002             2  0.017
# 16 -0.001             1 -0.001
# 17 -0.008             2 -0.009
# 18  0.010             1  0.010
# 19 -0.018             1 -0.018
# 20  0.046             1  0.046

Por debajo del punto de referencia para comparar soluciones reales

set.seed(0)
x <- round(rnorm(10000, sd = 0.02), 3)

library(runner)
runner_streak <- function(x) {
  n_of_sequence <- streak_run(x > 0)
  sum <- sum_run(x, k = n_of_sequence)
}

library(data.table)
dt <- data.table(x)
dt_streak <- function(dt) {
  dt[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}

rle_streak <- function(x) {
  run_lengths <- rle(sign(x))$lengths
  run_lengths

  n_of_sequence <- run_lengths %>% map(seq) %>% unlist

  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)]
  sum <- map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()
}

library(tidyverse)
df <- tibble(x = x)
tv_streak <- function(x) {
  res <- df %>%
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>%
    group_by(seqno) %>%
    mutate(n_of_sequence = row_number(),
           sum = cumsum(x)) %>%
    ungroup() %>% 
    select(-seqno)  
}

count_and_sum <- function(x) {
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) 
    data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}
microbenchmark::microbenchmark(
  runner_streak(x),
  dt_streak(dt),
  rle_streak(x),
  tv_streak(df),
  count_and_sum(x),
  times = 100L
)


# Unit: milliseconds
#             expr         min          lq        mean      median          uq        max neval
# runner_streak(x)    4.240192    4.833563    6.321697    5.300817    6.543926   14.80221   100
#    dt_streak(dt)    7.648100    8.587887   10.862806    9.650483   11.295488   34.66027   100
#    rle_streak(x)   42.321506   55.397586   64.195692   63.404403   67.813738  167.71444   100
#    tv_streak(df)   31.398885   36.333751   45.141452   40.800077   45.756279  163.19535   100
# count_and_sum(x) 1691.438977 1919.518282 2306.036783 2149.543281 2499.951020 6158.43384   100
GoGonzo
fuente
1
medir en microsegundos no tiene mucho sentido. Algunas funciones tienen una sobrecarga inicial en microsegundos, pero escalarán para grandes conjuntos de datos mucho mejor que otras. También df <- data.table(x)es una copia de datos completa. Además, está imprimiendo los datos en algunos ejemplos (que es otra copia completa) mientras no en otros.
David Arenburg
Tienes razón, arreglado.
GoGonzo
Algunas de las funciones devuelven diferentes objetos, algunos vectores y algunos marcos de datos, por lo que todavía no es un punto de referencia bastante justo. También algunos dan resultados diferentes. Tratar r = runner_streak(x); d = dt_streak(dt) ; all.equal(r, d$sum). Sólo comprobado unos pocos bbut tv_streakda lo mismo que dt_streak; count_and_sumda lo mismo runner_streakque son diferentes de los dos anteriores.
user2957945
3

En R, también puedes hacer:

# DATA
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

library(data.table)
dt <- data.table(x = x)

# Create Positive or Negative variable
dt$x_logical <- ifelse(dt$x > 0, "P", "N")

# Create a reference data.frame/table to keep continuous counts
seq_dt <- data.frame(val = rle(x = dt$x_logical)$lengths)
seq_dt$id <- 1:nrow(seq_dt)

# Map id in the main data.table and get cumulative sum
dt$id <- rep(seq_dt$id, seq_dt$val)
dt[, csum := cumsum(x), by = "id"]


        x x_logical id   csum
 1: -0.010         N  1 -0.010
 2:  0.003         P  2  0.003
 3: -0.002         N  3 -0.002
 4:  0.018         P  4  0.018
 5:  0.002         P  4  0.020
 6:  0.006         P  4  0.026
 7: -0.012         N  5 -0.012
 8:  0.014         P  6  0.014
 9: -0.017         N  7 -0.017
10: -0.007         N  7 -0.024
11:  0.002         P  8  0.002
12:  0.002         P  8  0.004
13: -0.004         N  9 -0.004
14:  0.015         P 10  0.015
15:  0.002         P 10  0.017
16: -0.001         N 11 -0.001
17: -0.008         N 11 -0.009
18:  0.010         P 12  0.010
19: -0.018         N 13 -0.018
20:  0.046         P 14  0.046
MKa
fuente
3

Lanzando mi [r] respuesta en el sombrero, optimizado para la velocidad y funciona con cualquier longitud de x (a diferencia del autor de la pregunta que estaba codificado para la longitud 20):

### data 
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)

### solution
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

Y, para comparar los tiempos de ejecución en mi computadora de trabajo actual (muy lenta), aquí está el resultado de mi microbenchmark usando todas las soluciones R en este hilo. Como era de esperar, las soluciones que hacen la mayor cantidad de copias y conversiones tienden a ser más lentas.

Unit: microseconds
         expr      min       lq       mean    median       uq      max neval
     my_way()   13.301   19.200   23.38352   21.4010   23.401  20604.0 1e+05
 author_way()   19.702   31.701   40.12371   36.0015   40.502  24393.9 1e+05
      ronak()  856.401 1113.601 1305.36419 1236.8010 1377.501 453191.4 1e+05
      ameer()  388.501  452.002  553.08263  491.3000  548.701 456156.6 1e+05
     andrew() 2007.801 2336.801 2748.57713 2518.1510 2760.302 463175.8 1e+05
      gonzo()   21.901   35.502   48.84946   43.9010   51.001  29519.5 1e+05

-------------- EDITAR -------------- @nicola señaló que mi solución no es la más rápida para longitudes más largas de x, que debería ser bastante obvio ya que continuamente estoy haciendo copias de vectores usando llamadas como x <- c (x, y). Solo creé la solución más rápida para longitudes = 20 y solo microbenchmarked tan bajo como pude para eso.

Para hacer una comparación más justa, edité todas las versiones para generar el código original de la manera que creo que sería más rápida, pero agradezco sus comentarios al respecto. Aquí está mi código de evaluación comparativa completo y los resultados para mi sistema muy lento. Agradezco cualquier comentario.

# originally benchmarked a few different lengths
for(pie in c(100000)){


my_way<- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
  first <- x[i]
  second <- summation[i - 1]

  if(sign(first) == sign(second)){
    summation <- c(summation, first + second)
    enn <- enn + 1
  }else{
    summation <- c(summation, first)
    enn <- 1

  }
  n_of_seq <- c(n_of_seq, enn)
  }

# print(summation)
}




author_way <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)

  sign_indicator <- ifelse(x > 0, 1,-1)
  sky <- length(x)
  number_of_sequence <- rep(NA, sky)
  n <- 1
  for (i in 2:sky) {
    if (sign_indicator[i] == sign_indicator[i - 1]) {
      n <- n + 1
    } else{
      n <- 1
    }
    number_of_sequence[i] <- n

  }
  number_of_sequence[1] <- 1

  #############################

  summation <- rep(NA, sky)

  for (i in 1:sky) {
    summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
  }
}


# other ppls solutions:




ronak <- function(){
df <- data.table('x' = round(rnorm(pie, sd = 0.02), 3))
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}



ameer <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  run_lengths <- rle(sign(x))$lengths
  n_of_sequence <- run_lengths %>% map(seq) %>% unlist
  start <- cumsum(c(1,run_lengths))
  start <- start[-length(start)] # start points of each series 
  map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()

}


count_and_sum <- function(x){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  runs   <- rle((x > 0) * 1)$lengths
  groups <- split(x, rep(1:length(runs), runs))
  output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
  result <- as.data.frame(do.call(rbind, lapply(groups, output)))
  `rownames<-`(result, 1:nrow(result))
}



andrew <- function(){
  set.seed(100)
  df <- tibble(x = round(rnorm(pie, sd = 0.02), 3)) %>% 
    mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
    group_by(seqno) %>%                                  #group by sequences
    mutate(n_of_sequence = row_number(),                 #count row numbers for each group
           sum = cumsum(x)) %>%                          #cumulative sum for each group
    ungroup() %>% 
    select(-seqno) 
}

gonzo <- function(){
  set.seed(100)
  x <- round(rnorm(pie, sd = 0.02), 3)
  n_of_sequence <- runner::streak_run(x > 0)
  sum <- runner::sum_run(x, k = n_of_sequence)
}



mi1 <- microbenchmark(my_way(), author_way(), ronak(), ameer(), andrew(), gonzo(), times = 10)
print(mi1)

}

Como muestran estos resultados, para otras longitudes de las que optimicé, mi versión es lenta. Cuanto más larga es x, más lenta se vuelve a ridículamente lenta en todo por encima de 1000. Mi versión favorita es la de Ronak, que es la segunda más rápida en mi sistema. GoGonzo es el más rápido en mi máquina con diferencia en estas longitudes más largas.

Unit: milliseconds
         expr        min         lq        mean      median         uq        max neval
     my_way() 21276.9027 21428.2694 21604.30191 21581.97970 21806.9543 21896.7105    10
 author_way()    82.2465    83.0873    89.42343    84.78315    85.3638   115.4550    10
      ronak()    68.3922    69.3067    70.41924    69.84625    71.3509    74.7070    10
      ameer()   481.4566   509.7552   521.19034   514.77000   530.1121   579.4707    10
     andrew()   200.9654   202.1898   210.84914   206.20465   211.2006   233.7618    10
      gonzo()    27.3317    28.2550    28.66679    28.50535    28.9104    29.9549    10
Acontecimiento adverso
fuente
Además, las otras respuestas funcionan para cualquier duración y su punto de referencia debe tener algún problema. Con respecto a la data.tablesolución de @ Ronak, la suya es un orden de magnitudes más lento para una longitud de ~ 100000.
Nicola
Gracias @nicola, solo dije que la solución del autor de la pregunta funcionó por solo 20 elementos, no que ninguna otra solución lo hiciera, de hecho lo hacen. También optimicé la velocidad para la longitud de 20 artículos, por lo que mi reclamo por ser el más rápido termina allí. Por lo que vale, también me gustó la solución Ronaks, pero el autor solicitó explícitamente más formas diferentes de resolver el problema. Ronak ya es más rápido para una longitud de 1000 también.
Adverse_Event
Y para ampliar el microbenchmark. Grabé mi punto de referencia para que cada solución creara (x) en el formato que están utilizando, de modo que los que hacen que tibbles generen x en la llamada de tibble, lo mismo para data.table, etc. (simplemente guardando la longitud de x en una variable y reemplazando la 20 con ella. Luego la ejecuté por una longitud de 100.000 durante 10 iteraciones. Tenga en cuenta que mi computadora es súper lenta, se ejecuta en un procesador de 5ta generación con ddr3 en 1600 mHz. Estoy editando mi publicación con esos resultados.
Adverse_Event
2

En Python, además de definir una clase para almacenar las variables de memoria, puede usar un cierre para lograr lo mismo.

def run():
    count = 0
    last_sign = 0

    def sign(i):
        return 1 if i > 0 else -1

    def f(i):
        nonlocal count
        nonlocal last_sign
        if sign(i) == last_sign:
            count = count+1
        else:
            last_sign = sign(i)
            count = 1
        return count

    return f

f = run()
y = [f(i) for i in x]

Tenga en cuenta que esto funciona solo para Python 3 (en Python 2, creo que no puede modificar la variable de cierre de esta manera). Algo similar para la suma también.

Prodipta Ghosh
fuente
2

Creo que un bucle sería más fácil de leer, pero solo por diversión, aquí hay una solución en Python usando la recursividad:

x = [-0.01, 0.003, -0.002, 0.018, 0.002, 0.006, -0.012, 0.014, -0.017, -0.007, 0.002, 0.002, -0.004, 0.015, 0.002,
     -0.001, -0.008, 0.01, -0.018, 0.046]


def sign(number):
    return 1 if number > 0 else -1


def sum_previous(pos, result=None):
    if not result:
        result = x[pos]
    else:
        result += x[pos]
    if pos == 0 or sign(x[pos]) != sign(x[pos-1]):
        return result
    else:
        return sum_previous(pos-1, result)


results = [sum_previous(i) for i in range(len(x))]
print(results)
RogB
fuente
2

Aquí hay otro enfoque base R:

data.frame(x,
           n = sequence(rle(sign(x))$lengths),
           sum = Reduce(function(x, y) if (sign(x) == sign(y)) x + y else y, x, accumulate = TRUE))

        x n    sum
1  -0.010 1 -0.010
2   0.003 1  0.003
3  -0.002 1 -0.002
4   0.018 1  0.018
5   0.002 2  0.020
6   0.006 3  0.026
7  -0.012 1 -0.012
8   0.014 1  0.014
9  -0.017 1 -0.017
10 -0.007 2 -0.024
11  0.002 1  0.002
12  0.002 2  0.004
13 -0.004 1 -0.004
14  0.015 1  0.015
15  0.002 2  0.017
16 -0.001 1 -0.001
17 -0.008 2 -0.009
18  0.010 1  0.010
19 -0.018 1 -0.018
20  0.046 1  0.046
H 1
fuente
Solo para hacer una trampa, Reduceoculta un bucle, por lo que esta no es una solución sin bucle.
Nicola
2

Una respuesta simple de Python, ignora el caso 0:

x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
     -0.017, -0.007, 0.002, 0.002, 
     -0.004, 0.015, 0.002, -0.001, 
     -0.008, 0.01, -0.018, 0.046]

count = 0
sign_positive = x[0] > 0
sign_count = []
for n in x:
    # the idea is to keep track of the sign and increment the 
    # count if it agrees with the current number we are looking at
    if (n > 0 and sign_positive) or (n < 0 and not sign_positive):
        count = count + 1
    # if it does not, the count goes back to 1
    else:
        count = 1
    # Whether we increased the count or not, we update whether the
    # sign was positive or negative
    sign_positive = n > 0
    sign_count.append(count)

# This is just to reproduce the output 
# (although I find the last repetition of the number unnecessary)    
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.002  1  0.002
11  0.002  2  0.002
12 -0.004  1 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046

Una solución un poco más sofisticada, también se ocupa del caso 0:

# To test the 0 case I am changing two numbers to 0
x = [-0.01, 0.003, -0.002, 0.018, 
     0.002, 0.006, -0.012, 0.014, 
    -0.017, -0.007, 0, 0, 
    -0.004, 0.015, 0.002, -0.001, 
    -0.008, 0.01, -0.018, 0.046]

# The rest is similar
count = 0
# This time we are using a nested ternary assignment 
# to account for the case of 0
# This would be more readable as a function, 
# but what it does is simple
# It returns None if n is 0, 
# True if it is larger than 0 
# and False if it less than 0
sign_positive = None if n == 0 else False if n < 0 else True
sign_count = []
for n in x:
    # We add the case of 0 by adding a third condition where
    # sign_positive was None (meaning the previous
    # number was 0) and the current number is 0.
    if (n > 0 and sign_positive) or \
       (n < 0 and not sign_positive) or \
       (n == 0 and sign_positive == None):
        count = count + 1
    else:
        count = 1
    sign_positive = None if n == 0 else False if n < 0 else True
    sign_count.append(count)
results = list(zip(x, sign_count))
for i, result in enumerate(results):
    print(f"{i: >2d} {result[0]: .3f} {result[1]: >2d} {result[0]: .3f}")

 0 -0.010  1 -0.010
 1  0.003  1  0.003
 2 -0.002  1 -0.002
 3  0.018  1  0.018
 4  0.002  2  0.002
 5  0.006  3  0.006
 6 -0.012  1 -0.012
 7  0.014  1  0.014
 8 -0.017  1 -0.017
 9 -0.007  2 -0.007
10  0.000  1  0.000
11  0.000  2  0.000
12 -0.004  3 -0.004
13  0.015  1  0.015
14  0.002  2  0.002
15 -0.001  1 -0.001
16 -0.008  2 -0.008
17  0.010  1  0.010
18 -0.018  1 -0.018
19  0.046  1  0.046
Sinan Kurmus
fuente