Algoritmo eficiente de truncamiento de cadenas, eliminando secuencialmente prefijos y sufijos iguales

11

Límite de tiempo por prueba: 5 segundos
Límite de memoria por prueba: 512 megabytes

Se le da una cadena sde longitud n( n≤ 5000). Puede seleccionar cualquier prefijo apropiado de esta cadena que también sea su sufijo y eliminar el prefijo seleccionado o el sufijo correspondiente. Luego puede aplicar una operación análoga a una cadena resultante y así sucesivamente. ¿Cuál es la longitud mínima de la cadena final que se puede lograr después de aplicar la secuencia óptima de tales operaciones?

Entrada
La primera línea de cada prueba contiene una cadena sque consta de pequeñas letras en inglés.

Salida
Genera un solo entero: la longitud mínima de la cadena final, que se puede lograr después de aplicar la secuencia óptima de tales operaciones.

Ejemplos +-------+--------+----------------------------------+ | Input | Output | Explanation | +-------+--------+----------------------------------+ | caaca | 2 | caaca → ca|aca → aca → ac|a → ac | +-------+--------+----------------------------------+ | aabaa | 2 | aaba|a → a|aba → ab|a → ab | +-------+--------+----------------------------------+ | abc | 3 | No operations are possible | +-------+--------+----------------------------------+

Esto es lo que he logrado hacer hasta ahora:

  1. Calcule la función de prefijo para todas las subcadenas de una cadena dada en O (n ^ 2)

  2. Verifique el resultado de realizar todas las combinaciones posibles de operaciones en O (n ^ 3)

Mi solución pasa todas las pruebas a n≤ 2000 pero excede el límite de tiempo cuando 2000 < n≤ 5000. Aquí está su código:

#include <iostream>
#include <string>

using namespace std;

const int MAX_N = 5000;

int result; // 1 less than actual

// [x][y] corresponds to substring that starts at position `x` and ends at position `x + y` =>
// => corresponding substring length is `y + 1`
int lps[MAX_N][MAX_N]; // prefix function for the substring s[x..x+y]
bool checked[MAX_N][MAX_N]; // whether substring s[x..x+y] is processed by check function

// length is 1 less than actual
void check(int start, int length) {
    checked[start][length] = true;
    if (length < result) {
        if (length == 0) {
            cout << 1; // actual length = length + 1 = 0 + 1 = 1
            exit(0); // 1 is the minimum possible result
        }
        result = length;
    }
    // iteration over all proper prefixes that are also suffixes
    // i - current prefix length
    for (int i = lps[start][length]; i != 0; i = lps[start][i - 1]) {
        int newLength = length - i;
        int newStart = start + i;
        if (!checked[start][newLength])
            check(start, newLength);
        if (!checked[newStart][newLength])
            check(newStart, newLength);
    }
}

int main()
{
    string str;
    cin >> str;
    int n = str.length();
    // lps calculation runs in O(n^2)
    for (int l = 0; l < n; l++) {
        int subLength = n - l;
        lps[l][0] = 0;
        checked[l][0] = false;
        for (int i = 1; i < subLength; ++i) {
            int j = lps[l][i - 1];
            while (j > 0 && str[i + l] != str[j + l])
                j = lps[l][j - 1];
            if (str[i + l] == str[j + l])  j++;
            lps[l][i] = j;
            checked[l][i] = false;
        }
    }
    result = n - 1;
    // checking all possible operations combinations in O(n^3)
    check(0, n - 1);
    cout << result + 1;
}

P: ¿Hay alguna solución más eficiente?

Bananon
fuente
55
Creo que Code Review Stack Exchange sería mejor para esto. Buena y clara pregunta de todos modos.
Ruohola
@ruohola Gracias. No estoy buscando una revisión de código, sino un algoritmo mejor.
Bananon
2
Por cierto, ¿estás seguro de que una matriz de elementos enteros de 2.5 millones cabrá en tu pila?
Ruohola
1
@ruohola esa matriz está en el alcance del archivo, por lo que no se coloca en la pila sino en una sección separada en el archivo binario. Pero sí, no es una buena idea declarar una matriz 2D tan grande como esa. Un vector pequeño será mucho mejor para la localidad de caché
phuclv
1
Aquí está el tiempo de espera del generador de prueba: ideone.com/pDhxS6 Y aquí hay 3.54s, 420 MB: ideone.com/EIrhnR
גלעד ברקן

Respuestas:

5

Aquí hay una forma de obtener el factor de registro. Sea dp[i][j]verdad si podemos alcanzar la subcadena s[i..j]. Entonces:

dp[0][length(s)-1] ->
  true

dp[0][j] ->
  if s[0] != s[j+1]:
    false
  else:
    true if any dp[0][k]
      for j < k  (j + longestMatchRight[0][j+1])

  (The longest match we can use is
   also bound by the current range.)

(Initialise left side similarly.)

Ahora itera desde afuera en:

for i = 1 to length(s)-2:
  for j = length(s)-2 to i:
    dp[i][j] ->
      // We removed on the right
      if s[i] != s[j+1]:
        false
      else:
        true if any dp[i][k]
          for j < k  (j + longestMatchRight[i][j+1])

      // We removed on the left
      if s[i-1] != s[j]:
        true if dp[i][j]
      else:
        true if any dp[k][j]
          for (i - longestMatchLeft[i-1][j])  k < i

Podemos calcular previamente el partido más largo de cada par a partir (i, j)de O(n^2)la recurrencia,

longest(i, j) -> 
  if s[i] == s[j]:
    return 1 + longest(i + 1, j + 1)
  else:
    return 0

Esto nos permitiría verificar una coincidencia de subcadena que comience en los índices iy jen O(1). (Necesitamos ambas direcciones, derecha e izquierda).

Cómo obtener el factor de registro

Podemos pensar en una forma de crear una estructura de datos que nos permita determinar si

any dp[i][k]
  for j < k  (j + longestMatchRight[i][j+1])

(And similarly for the left side.)

en O(log n), considerando que ya hemos visto esos valores.

Aquí está el código C ++ con árboles de segmentos (para consultas derecha e izquierda, por lo tanto O(n^2 * log n)) que incluye el generador de prueba de Bananon. Para 5000 caracteres "a", se ejecutó en 3.54s, 420 MB ( https://ideone.com/EIrhnR ). Para reducir la memoria, uno de los árboles de segmentos se implementa en una sola fila (todavía necesito investigar hacer lo mismo con las consultas del lado izquierdo para reducir aún más la memoria).

#include <iostream>
#include <string>
#include <ctime>
#include <random>
#include <algorithm>    // std::min

using namespace std;

const int MAX_N = 5000;

int seg[2 * MAX_N];
int segsL[MAX_N][2 * MAX_N];
int m[MAX_N][MAX_N][2];
int dp[MAX_N][MAX_N];
int best;

// Adapted from https://codeforces.com/blog/entry/18051
void update(int n, int p, int value) { // set value at position p
  for (seg[p += n] = value; p > 1; p >>= 1)
    seg[p >> 1] = seg[p] + seg[p ^ 1];
}
// Adapted from https://codeforces.com/blog/entry/18051
int query(int n, int l, int r) { // sum on interval [l, r)
  int res = 0;
  for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
    if (l & 1) res += seg[l++];
    if (r & 1) res += seg[--r];
  }
  return res;
}
// Adapted from https://codeforces.com/blog/entry/18051
void updateL(int n, int i, int p, int value) { // set value at position p
  for (segsL[i][p += n] = value; p > 1; p >>= 1)
    segsL[i][p >> 1] = segsL[i][p] + segsL[i][p ^ 1];
}
// Adapted from https://codeforces.com/blog/entry/18051
int queryL(int n, int i, int l, int r) { // sum on interval [l, r)
  int res = 0;
  for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
    if (l & 1) res += segsL[i][l++];
    if (r & 1) res += segsL[i][--r];
  }
  return res;
}

// Code by גלעד ברקן
void precalc(int n, string & s) {
  int i, j;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      // [longest match left, longest match right]
      m[i][j][0] = (s[i] == s[j]) & 1;
      m[i][j][1] = (s[i] == s[j]) & 1;
    }
  }

  for (i = n - 2; i >= 0; i--)
    for (j = n - 2; j >= 0; j--)
      m[i][j][1] = s[i] == s[j] ? 1 + m[i + 1][j + 1][1] : 0;

  for (i = 1; i < n; i++)
    for (j = 1; j < n; j++)
      m[i][j][0] = s[i] == s[j] ? 1 + m[i - 1][j - 1][0] : 0;
}

// Code by גלעד ברקן
void f(int n, string & s) {
  int i, j, k, longest;

  dp[0][n - 1] = 1;
  update(n, n - 1, 1);
  updateL(n, n - 1, 0, 1);

  // Right side initialisation
  for (j = n - 2; j >= 0; j--) {
    if (s[0] == s[j + 1]) {
      longest = std::min(j + 1, m[0][j + 1][1]);
      for (k = j + 1; k <= j + longest; k++)
        dp[0][j] |= dp[0][k];
      if (dp[0][j]) {
        update(n, j, 1);
        updateL(n, j, 0, 1);
        best = std::min(best, j + 1);
      }
    }
  }

  // Left side initialisation
  for (i = 1; i < n; i++) {
    if (s[i - 1] == s[n - 1]) {
      // We are bound by the current range
      longest = std::min(n - i, m[i - 1][n - 1][0]);
      for (k = i - 1; k >= i - longest; k--)
        dp[i][n - 1] |= dp[k][n - 1];
      if (dp[i][n - 1]) {
        updateL(n, n - 1, i, 1);
        best = std::min(best, n - i);
      }
    }
  }

  for (i = 1; i <= n - 2; i++) {
    for (int ii = 0; ii < MAX_N; ii++) {
      seg[ii * 2] = 0;
      seg[ii * 2 + 1] = 0;
    }
    update(n, n - 1, dp[i][n - 1]);
    for (j = n - 2; j >= i; j--) {
      // We removed on the right
      if (s[i] == s[j + 1]) {
        // We are bound by half the current range
        longest = std::min(j - i + 1, m[i][j + 1][1]);
        //for (k=j+1; k<=j+longest; k++)
        //dp[i][j] |= dp[i][k];
        if (query(n, j + 1, j + longest + 1)) {
          dp[i][j] = 1;
          update(n, j, 1);
          updateL(n, j, i, 1);
        }
      }
      // We removed on the left
      if (s[i - 1] == s[j]) {
        // We are bound by half the current range
        longest = std::min(j - i + 1, m[i - 1][j][0]);
        //for (k=i-1; k>=i-longest; k--)
        //dp[i][j] |= dp[k][j];
        if (queryL(n, j, i - longest, i)) {
          dp[i][j] = 1;
          updateL(n, j, i, 1);
          update(n, j, 1);
        }
      }
      if (dp[i][j])
        best = std::min(best, j - i + 1);
    }
  }
}

int so(string s) {
  for (int i = 0; i < MAX_N; i++) {
    seg[i * 2] = 0;
    seg[i * 2 + 1] = 0;
    for (int j = 0; j < MAX_N; j++) {
      segsL[i][j * 2] = 0;
      segsL[i][j * 2 + 1] = 0;
      m[i][j][0] = 0;
      m[i][j][1] = 0;
      dp[i][j] = 0;
    }
  }
  int n = s.length();
  best = n;
  precalc(n, s);
  f(n, s);
  return best;
}
// End code by גלעד ברקן

// Code by Bananon  =======================================================================

int result;

int lps[MAX_N][MAX_N];
bool checked[MAX_N][MAX_N];

void check(int start, int length) {
  checked[start][length] = true;
  if (length < result) {
    result = length;
  }
  for (int i = lps[start][length]; i != 0; i = lps[start][i - 1]) {
    int newLength = length - i;
    if (!checked[start][newLength])
      check(start, newLength);
    int newStart = start + i;
    if (!checked[newStart][newLength])
      check(newStart, newLength);
  }
}

int my(string str) {
  int n = str.length();
  for (int l = 0; l < n; l++) {
    int subLength = n - l;
    lps[l][0] = 0;
    checked[l][0] = false;
    for (int i = 1; i < subLength; ++i) {
      int j = lps[l][i - 1];
      while (j > 0 && str[i + l] != str[j + l])
        j = lps[l][j - 1];
      if (str[i + l] == str[j + l]) j++;
      lps[l][i] = j;
      checked[l][i] = false;
    }
  }
  result = n - 1;
  check(0, n - 1);
  return result + 1;
}

// generate =================================================================

bool rndBool() {
  return rand() % 2 == 0;
}

int rnd(int bound) {
  return rand() % bound;
}

void untrim(string & str) {
  int length = rnd(str.length());
  int prefixLength = rnd(str.length()) + 1;
  if (rndBool())
    str.append(str.substr(0, prefixLength));
  else {
    string newStr = str.substr(str.length() - prefixLength, prefixLength);
    newStr.append(str);
    str = newStr;
  }
}

void rndTest(int minTestLength, string s) {
  while (s.length() < minTestLength)
    untrim(s);
  int myAns = my(s);
  int soAns = so(s);
  cout << myAns << " " << soAns << '\n';
  if (soAns != myAns) {
    cout << s;
    exit(0);
  }
}

int main() {
  int minTestLength;
  cin >> minTestLength;
  string seed;
  cin >> seed;
  while (true)
    rndTest(minTestLength, seed);
}

Y aquí está el código JavaScript (sin la mejora del factor de registro) para mostrar que la recurrencia funciona. (Para obtener el factor de registro, reemplazamos los kbucles internos con una consulta de rango único).

debug = 1

function precalc(s){
  let m = new Array(s.length)
  for (let i=0; i<s.length; i++){
    m[i] = new Array(s.length)
    for (let j=0; j<s.length; j++){
      // [longest match left, longest match right]
      m[i][j] = [(s[i] == s[j]) & 1, (s[i] == s[j]) & 1]
    }
  }
  
  for (let i=s.length-2; i>=0; i--)
    for (let j=s.length-2; j>=0; j--)
      m[i][j][1] = s[i] == s[j] ? 1 + m[i+1][j+1][1] : 0

  for (let i=1; i<s.length; i++)
    for (let j=1; j<s.length; j++)
      m[i][j][0] = s[i] == s[j] ? 1 + m[i-1][j-1][0] : 0
  
  return m
}

function f(s){
  m = precalc(s)
  let n = s.length
  let min = s.length
  let dp = new Array(s.length)

  for (let i=0; i<s.length; i++)
    dp[i] = new Array(s.length).fill(0)

  dp[0][s.length-1] = 1
      
  // Right side initialisation
  for (let j=s.length-2; j>=0; j--){
    if (s[0] == s[j+1]){
      let longest = Math.min(j + 1, m[0][j+1][1])
      for (let k=j+1; k<=j+longest; k++)
        dp[0][j] |= dp[0][k]
      if (dp[0][j])
        min = Math.min(min, j + 1)
    }
  }

  // Left side initialisation
  for (let i=1; i<s.length; i++){
    if (s[i-1] == s[s.length-1]){
      let longest = Math.min(s.length - i, m[i-1][s.length-1][0])
      for (let k=i-1; k>=i-longest; k--)
        dp[i][s.length-1] |= dp[k][s.length-1]
      if (dp[i][s.length-1])
        min = Math.min(min, s.length - i)
    }
  }

  for (let i=1; i<=s.length-2; i++){
    for (let j=s.length-2; j>=i; j--){
      // We removed on the right
      if (s[i] == s[j+1]){
        // We are bound by half the current range
        let longest = Math.min(j - i + 1, m[i][j+1][1])
        for (let k=j+1; k<=j+longest; k++)
          dp[i][j] |= dp[i][k]
      }
      // We removed on the left
      if (s[i-1] == s[j]){
        // We are bound by half the current range
        let longest = Math.min(j - i + 1, m[i-1][j][0])
        for (let k=i-1; k>=i-longest; k--)
          dp[i][j] |= dp[k][j]
      }
      if (dp[i][j])
        min = Math.min(min, j - i + 1)
    }
  }

  if (debug){
    let str = ""
    for (let row of dp)
      str += row + "\n"
    console.log(str)
  }

  return min
}

function main(s){
  var strs = [
    "caaca",
    "bbabbbba",
    "baabbabaa",
    "bbabbba",
    "bbbabbbbba",
    "abbabaabbab",
    "abbabaabbaba",
    "aabaabaaabaab",
    "bbabbabbb"
  ]

  for (let s of strs){
    let t = new Date
    console.log(s)
    console.log(f(s))
    //console.log((new Date - t)/1000)
    console.log("")
  }
}

main()

גלעד ברקן
fuente
Los comentarios no son para discusión extendida; Esta conversación se ha movido al chat .
Samuel Liew
Sombra ide la línea 64 que comienza la línea 99 es un poco difícil de entender, ¿es eso intencional? ¿Las declaraciones de bucles en 98 y 99 parecen dejarse ien MAX_Nel resto del alcance del bucle de la línea 98? (Versión C ++)
David C. Rankin
@ DavidC.Rankin que ifue solo para el alcance de ese bucle de cuatro líneas, pero podría parecer confuso. Gracias por señalarlo: lo cambié, aunque el cambio no afecta la ejecución del código.
עדלעד ברקן
Intenté un enfoque recursivo intermedio, mostré promesa, pero cuando el prefijo / sufijo igual es grande, la ramificación recursiva requerida para determinar qué camino conduce a la palabra mínima se volvió bastante rebelde, rápidamente.
David C. Rankin
@ DavidC.Rankin sí, lo intenté también, pero incluso los controles de los rangos ya visitados parecían ser demasiados.
Jueves,