Contenedores STL C ++ de impresión bonita

389

Tome nota de las actualizaciones al final de esta publicación.

Actualización: ¡he creado un proyecto público en GitHub para esta biblioteca!


Me gustaría tener una plantilla única que de una vez por todas se encargue de imprimir de manera bonita todos los contenedores STL operator<<. En pseudocódigo, estoy buscando algo como esto:

template<container C, class T, String delim = ", ", String open = "[", String close = "]">
std::ostream & operator<<(std::ostream & o, const C<T> & x)
{
    o << open;
    // for (typename C::const_iterator i = x.begin(); i != x.end(); i++) /* Old-school */
    for (auto i = x.begin(); i != x.end(); i++)
    {
        if (i != x.begin()) o << delim;
        o << *i;
    }
    o << close;
    return o;
}

Ahora he visto mucha magia de plantillas aquí en SO que nunca pensé posible, así que me pregunto si alguien puede sugerir algo que coincida con todos los contenedores C. Quizás algo característico que pueda descubrir si algo tiene el iterador necesario ?

¡Muchas gracias!


Actualización (y solución)

Después de plantear este problema nuevamente en el Canal 9 , recibí una respuesta fantástica de Sven Groot, que, combinado con un poco de caracterización tipo SFINAE, parece resolver el problema de una manera completamente general y anidable. Los delimitadores pueden estar especializados individualmente, se incluye un ejemplo de especialización para std :: set, así como un ejemplo del uso de delimitadores personalizados.

El asistente "wrap_array ()" se puede usar para imprimir matrices C sin procesar. Actualización: pares y tuplas están disponibles para imprimir; los delimitadores predeterminados son corchetes.

El rasgo de tipo enable-if requiere C ++ 0x, pero con algunas modificaciones debería ser posible hacer una versión C ++ 98 de esto. Las tuplas requieren plantillas variadas, por lo tanto, C ++ 0x.

Le he pedido a Sven que publique la solución aquí para poder aceptarla, pero mientras tanto me gustaría publicar el código yo mismo como referencia. ( Actualización: Sven ahora ha publicado su código a continuación, que hice la respuesta aceptada. Mi propio código utiliza rasgos de tipo contenedor, que funcionan para mí pero pueden causar un comportamiento inesperado con clases que no son contenedores que proporcionan iteradores).

Encabezado (prettyprint.h):

#ifndef H_PRETTY_PRINT
#define H_PRETTY_PRINT


#include <type_traits>
#include <iostream>
#include <utility>
#include <tuple>


namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    template<typename T, typename TTraits, typename TAllocator> class set;
}

namespace pretty_print
{

    // SFINAE type trait to detect a container based on whether T::const_iterator exists.
    // (Improvement idea: check also if begin()/end() exist.)

    template<typename T>
    struct is_container_helper
    {
    private:
        template<typename C> static char test(typename C::const_iterator*);
        template<typename C> static int  test(...);
    public:
        static const bool value = sizeof(test<T>(0)) == sizeof(char);
    };


    // Basic is_container template; specialize to derive from std::true_type for all desired container types

    template<typename T> struct is_container : public ::std::integral_constant<bool, is_container_helper<T>::value> { };


    // Holds the delimiter values for a specific character type

    template<typename TChar>
    struct delimiters_values
    {
        typedef TChar char_type;
        const TChar * prefix;
        const TChar * delimiter;
        const TChar * postfix;
    };


    // Defines the delimiter values for a specific container and character type

    template<typename T, typename TChar>
    struct delimiters
    {
        typedef delimiters_values<TChar> type;
        static const type values; 
    };


    // Default delimiters

    template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
    template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "[", ", ", "]" };
    template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"[", L", ", L"]" };


    // Delimiters for set

    template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
    template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters< ::std::set<T, TTraits, TAllocator>, char>::values = { "{", ", ", "}" };
    template<typename T, typename TTraits, typename TAllocator> struct delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters< ::std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"{", L", ", L"}" };


    // Delimiters for pair (reused for tuple, see below)

    template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
    template<typename T1, typename T2> const delimiters_values<char> delimiters< ::std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
    template<typename T1, typename T2> struct delimiters< ::std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
    template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters< ::std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };


    // Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.

    template<typename T, typename TChar = char, typename TCharTraits = ::std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar>>
    struct print_container_helper
    {
        typedef TChar char_type;
        typedef TDelimiters delimiters_type;
        typedef std::basic_ostream<TChar, TCharTraits> & ostream_type;

        print_container_helper(const T & container)
        : _container(container)
        {
        }

        inline void operator()(ostream_type & stream) const
        {
            if (delimiters_type::values.prefix != NULL)
                stream << delimiters_type::values.prefix;

            for (typename T::const_iterator beg = _container.begin(), end = _container.end(), it = beg; it != end; ++it)
            {
                if (it != beg && delimiters_type::values.delimiter != NULL)
                    stream << delimiters_type::values.delimiter;

                stream << *it;
            }

            if (delimiters_type::values.postfix != NULL)
                stream << delimiters_type::values.postfix;
        }

    private:
        const T & _container;
    };


    // Type-erasing helper class for easy use of custom delimiters.
    // Requires TCharTraits = std::char_traits<TChar> and TChar = char or wchar_t, and MyDelims needs to be defined for TChar.
    // Usage: "cout << pretty_print::custom_delims<MyDelims>(x)".

    struct custom_delims_base
    {
        virtual ~custom_delims_base() { }
        virtual ::std::ostream & stream(::std::ostream &) = 0;
        virtual ::std::wostream & stream(::std::wostream &) = 0;
    };

    template <typename T, typename Delims>
    struct custom_delims_wrapper : public custom_delims_base
    {
        custom_delims_wrapper(const T & t) : t(t) { }

        ::std::ostream & stream(::std::ostream & stream)
        {
          return stream << ::pretty_print::print_container_helper<T, char, ::std::char_traits<char>, Delims>(t);
        }
        ::std::wostream & stream(::std::wostream & stream)
        {
          return stream << ::pretty_print::print_container_helper<T, wchar_t, ::std::char_traits<wchar_t>, Delims>(t);
        }

    private:
        const T & t;
    };

    template <typename Delims>
    struct custom_delims
    {
        template <typename Container> custom_delims(const Container & c) : base(new custom_delims_wrapper<Container, Delims>(c)) { }
        ~custom_delims() { delete base; }
        custom_delims_base * base;
    };

} // namespace pretty_print


template <typename TChar, typename TCharTraits, typename Delims>
inline std::basic_ostream<TChar, TCharTraits> & operator<<(std::basic_ostream<TChar, TCharTraits> & stream, const pretty_print::custom_delims<Delims> & p)
{
    return p.base->stream(stream);
}


// Template aliases for char and wchar_t delimiters
// Enable these if you have compiler support
//
// Implement as "template<T, C, A> const sdelims::type sdelims<std::set<T,C,A>>::values = { ... }."

//template<typename T> using pp_sdelims = pretty_print::delimiters<T, char>;
//template<typename T> using pp_wsdelims = pretty_print::delimiters<T, wchar_t>;


namespace std
{
    // Prints a print_container_helper to the specified stream.

    template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream,
                                                          const ::pretty_print::print_container_helper<T, TChar, TCharTraits, TDelimiters> & helper)
    {
        helper(stream);
        return stream;
    }

    // Prints a container to the stream using default delimiters

    template<typename T, typename TChar, typename TCharTraits>
    inline typename enable_if< ::pretty_print::is_container<T>::value, basic_ostream<TChar, TCharTraits>&>::type
    operator<<(basic_ostream<TChar, TCharTraits> & stream, const T & container)
    {
        return stream << ::pretty_print::print_container_helper<T, TChar, TCharTraits>(container);
    }

    // Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
    template<typename T1, typename T2, typename TChar, typename TCharTraits>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const pair<T1, T2> & value)
    {
        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.prefix;

        stream << value.first;

        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.delimiter;

        stream << value.second;

        if (::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix != NULL)
            stream << ::pretty_print::delimiters<pair<T1, T2>, TChar>::values.postfix;

        return stream;
    }
} // namespace std

// Prints a tuple to the stream using delimiters from delimiters<std::pair<tuple_dummy_t, tuple_dummy_t>>.

namespace pretty_print
{
    struct tuple_dummy_t { }; // Just if you want special delimiters for tuples.

    typedef std::pair<tuple_dummy_t, tuple_dummy_t> tuple_dummy_pair;

    template<typename Tuple, size_t N, typename TChar, typename TCharTraits>
    struct pretty_tuple_helper
    {
        static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value)
        {
            pretty_tuple_helper<Tuple, N - 1, TChar, TCharTraits>::print(stream, value);

            if (delimiters<tuple_dummy_pair, TChar>::values.delimiter != NULL)
                stream << delimiters<tuple_dummy_pair, TChar>::values.delimiter;

            stream << std::get<N - 1>(value);
        }
    };

    template<typename Tuple, typename TChar, typename TCharTraits>
    struct pretty_tuple_helper<Tuple, 1, TChar, TCharTraits>
    {
        static inline void print(::std::basic_ostream<TChar, TCharTraits> & stream, const Tuple & value) { stream << ::std::get<0>(value); }
    };
} // namespace pretty_print


namespace std
{
    template<typename TChar, typename TCharTraits, typename ...Args>
    inline basic_ostream<TChar, TCharTraits> & operator<<(basic_ostream<TChar, TCharTraits> & stream, const tuple<Args...> & value)
    {
        if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix != NULL)
            stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.prefix;

        ::pretty_print::pretty_tuple_helper<const tuple<Args...> &, sizeof...(Args), TChar, TCharTraits>::print(stream, value);

        if (::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix != NULL)
            stream << ::pretty_print::delimiters< ::pretty_print::tuple_dummy_pair, TChar>::values.postfix;

        return stream;
    }
} // namespace std


// A wrapper for raw C-style arrays. Usage: int arr[] = { 1, 2, 4, 8, 16 };  std::cout << wrap_array(arr) << ...

namespace pretty_print
{
    template <typename T, size_t N>
    struct array_wrapper
    {
        typedef const T * const_iterator;
        typedef T value_type;

        array_wrapper(const T (& a)[N]) : _array(a) { }
        inline const_iterator begin() const { return _array; }
        inline const_iterator end() const { return _array + N; }

    private:
        const T * const _array;
    };
} // namespace pretty_print

template <typename T, size_t N>
inline pretty_print::array_wrapper<T, N> pretty_print_array(const T (& a)[N])
{
    return pretty_print::array_wrapper<T, N>(a);
}


#endif

Ejemplo de uso:

#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include <set>
#include <array>
#include <tuple>
#include <utility>
#include <string>

#include "prettyprint.h"

// Specialization for a particular container
template<> const pretty_print::delimiters_values<char> pretty_print::delimiters<std::vector<double>, char>::values = { "|| ", " : ", " ||" };

// Custom delimiters for one-off use
struct MyDel { static const delimiters_values<char> values; };
const delimiters_values<char> MyDel::values = { "<", "; ", ">" };

int main(int argc, char * argv[])
{
  std::string cs;
  std::unordered_map<int, std::string> um;
  std::map<int, std::string> om;
  std::set<std::string> ss;
  std::vector<std::string> v;
  std::vector<std::vector<std::string>> vv;
  std::vector<std::pair<int, std::string>> vp;
  std::vector<double> vd;
  v.reserve(argc - 1);
  vv.reserve(argc - 1);
  vp.reserve(argc - 1);
  vd.reserve(argc - 1);

  std::cout << "Printing pairs." << std::endl;

  while (--argc)
  {
    std::string s(argv[argc]);
    std::pair<int, std::string> p(argc, s);

    um[argc] = s;
    om[argc] = s;
    v.push_back(s);
    vv.push_back(v);
    vp.push_back(p);
    vd.push_back(1./double(i));
    ss.insert(s);
    cs += s;

    std::cout << "  " << p << std::endl;
  }

  std::array<char, 5> a{{ 'h', 'e', 'l', 'l', 'o' }};

  std::cout << "Vector: " << v << std::endl
            << "Incremental vector: " << vv << std::endl
            << "Another vector: " << vd << std::endl
            << "Pairs: " << vp << std::endl
            << "Set: " << ss << std::endl
            << "OMap: " << om << std::endl
            << "UMap: " << um << std::endl
            << "String: " << cs << std::endl
            << "Array: " << a << std::endl
  ;

  // Using custom delimiters manually:
  std::cout << pretty_print::print_container_helper<std::vector<std::string>, char, std::char_traits<char>, MyDel>(v) << std::endl;

  // Using custom delimiters with the type-erasing helper class
  std::cout << pretty_print::custom_delims<MyDel>(v) << std::endl;

  // Pairs and tuples and arrays:
  auto a1 = std::make_pair(std::string("Jello"), 9);
  auto a2 = std::make_tuple(1729);
  auto a3 = std::make_tuple("Qrgh", a1, 11);
  auto a4 = std::make_tuple(1729, 2875, std::pair<double, std::string>(1.5, "meow"));
  int arr[] = { 1, 4, 9, 16 };

  std::cout << "C array: " << wrap_array(arr) << std::endl
            << "Pair: " << a1 << std::endl
            << "1-tuple: " << a2 << std::endl
            << "n-tuple: " << a3 << std::endl
            << "n-tuple: " << a4 << std::endl
  ;
}

Más ideas para mejoras:

  • Implemente la salida de std::tuple<...>la misma manera para la que la tenemos std::pair<S,T>. Actualización: ¡ Esta es ahora una pregunta separada sobre SO ! Actualización: ¡ Esto ahora se ha implementado, gracias a Xeo!
  • Agregue espacios de nombres para que las clases auxiliares no sangren en el espacio de nombres global. Hecho
  • ¿Agregar alias de plantilla (o algo similar) para facilitar la creación de clases de delimitador personalizadas o quizás macros de preprocesador?

Actualizaciones recientes:

  • Eliminé el iterador de salida personalizado a favor de un bucle for simple en la función de impresión.
  • Todos los detalles de implementación están ahora en el pretty_printespacio de nombres. Solo los operadores de flujo global y el pretty_print_arraycontenedor están en el espacio de nombres global.
  • Se corrigió el espacio de nombres para que operator<<ahora esté correctamente en std.

Notas:

  • Eliminar el iterador de salida significa que no hay forma de usarlo std::copy()para obtener una impresión bonita. Podría restablecer el bonito iterador si esta es una característica deseada, pero el siguiente código de Sven tiene la implementación.
  • Fue una decisión de diseño consciente hacer que los delimitadores compilaran constantes de tiempo en lugar de constantes de objeto. Eso significa que no puede suministrar delimitadores dinámicamente en tiempo de ejecución, pero también significa que no hay sobrecarga innecesaria. Dennis Zickefoose propuso una configuración de delimitador basada en objetos en un comentario al código de Sven a continuación. Si lo desea, esto podría implementarse como una característica alternativa.
  • Actualmente no es obvio cómo personalizar los delimitadores de contenedores anidados.
  • Tenga en cuenta que el propósito de esta biblioteca es permitir instalaciones de impresión rápida de contenedores que requieren cero codificación por su parte. No es una biblioteca de formato de uso múltiple, sino más bien una herramienta de desarrollo para aliviar la necesidad de escribir código de placa de caldera para la inspección de contenedores.

¡Gracias a todos los que contribuyeron!


Nota: Si está buscando una forma rápida de implementar delimitadores personalizados, esta es una forma de usar el borrado de tipo. Suponemos que ya ha construido una clase de delimitador, por ejemplo MyDel:

struct MyDel { static const pretty_print::delimiters_values<char> values; };
const pretty_print::delimiters_values<char> MyDel::values = { "<", "; ", ">" };

Ahora queremos poder escribir std::cout << MyPrinter(v) << std::endl;para algún contenedor vutilizando esos delimitadores. MyPrinterserá una clase de borrado de tipo, así:

struct wrapper_base
{
  virtual ~wrapper_base() { }
  virtual std::ostream & stream(std::ostream & o) = 0;
};

template <typename T, typename Delims>
struct wrapper : public wrapper_base
{
  wrapper(const T & t) : t(t) { }
  std::ostream & stream(std::ostream & o)
  {
    return o << pretty_print::print_container_helper<T, char, std::char_traits<char>, Delims>(t);
  }
private:
  const T & t;
};

template <typename Delims>
struct MyPrinter
{
  template <typename Container> MyPrinter(const Container & c) : base(new wrapper<Container, Delims>(c)) { }
  ~MyPrinter() { delete base; }
  wrapper_base * base;
};

template <typename Delims>
std::ostream & operator<<(std::ostream & o, const MyPrinter<Delims> & p) { return p.base->stream(o); }
Kerrek SB
fuente
Tu código no funcionará. no existe una palabra clave como contenedor C
the_drow
31
@the_drow: Parece que OP ya lo sabe. Solo están indicando lo que están buscando.
Marcelo Cantos
De hecho, solo di un ejemplo de pseudocódigo "moral". (También omití el tipo de retorno, lo estoy notando). Para estar seguro, ni siquiera sé cómo hacer que los delimitadores sean cambiables.
Kerrek SB
1
Otra alternativa sería colocar a los operadores en el pretty_printespacio de nombres y proporcionar un contenedor para que el usuario lo use al imprimir. Desde el punto de vista del usuario: std::cout << pretty_print(v);(probablemente con un nombre diferente). Luego puede proporcionar el operador en el mismo espacio de nombres que el contenedor, y luego puede expandirse para imprimir lo que desee. También podría mejorar el envoltorio permitiendo opcionalmente definir el separador para usar dentro de cada llamada (en lugar de usar rasgos que fuercen la misma opción para toda la aplicación) \
David Rodríguez - dribeas
1
Convierta sus respuestas de "actualización" en respuestas reales en lugar de tener una pregunta descomunal.
einpoklum

Respuestas:

82

Esta solución se inspiró en la solución de Marcelo, con algunos cambios:

#include <iostream>
#include <iterator>
#include <type_traits>
#include <vector>
#include <algorithm>

// This works similar to ostream_iterator, but doesn't print a delimiter after the final item
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar> >
class pretty_ostream_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void>
{
public:
    typedef TChar char_type;
    typedef TCharTraits traits_type;
    typedef std::basic_ostream<TChar, TCharTraits> ostream_type;

    pretty_ostream_iterator(ostream_type &stream, const char_type *delim = NULL)
        : _stream(&stream), _delim(delim), _insertDelim(false)
    {
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator=(const T &value)
    {
        if( _delim != NULL )
        {
            // Don't insert a delimiter if this is the first time the function is called
            if( _insertDelim )
                (*_stream) << _delim;
            else
                _insertDelim = true;
        }
        (*_stream) << value;
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator*()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++()
    {
        return *this;
    }

    pretty_ostream_iterator<T, TChar, TCharTraits>& operator++(int)
    {
        return *this;
    }
private:
    ostream_type *_stream;
    const char_type *_delim;
    bool _insertDelim;
};

#if _MSC_VER >= 1400

// Declare pretty_ostream_iterator as checked
template<typename T, typename TChar, typename TCharTraits>
struct std::_Is_checked_helper<pretty_ostream_iterator<T, TChar, TCharTraits> > : public std::tr1::true_type
{
};

#endif // _MSC_VER >= 1400

namespace std
{
    // Pre-declarations of container types so we don't actually have to include the relevant headers if not needed, speeding up compilation time.
    // These aren't necessary if you do actually include the headers.
    template<typename T, typename TAllocator> class vector;
    template<typename T, typename TAllocator> class list;
    template<typename T, typename TTraits, typename TAllocator> class set;
    template<typename TKey, typename TValue, typename TTraits, typename TAllocator> class map;
}

// Basic is_container template; specialize to derive from std::true_type for all desired container types
template<typename T> struct is_container : public std::false_type { };

// Mark vector as a container
template<typename T, typename TAllocator> struct is_container<std::vector<T, TAllocator> > : public std::true_type { };

// Mark list as a container
template<typename T, typename TAllocator> struct is_container<std::list<T, TAllocator> > : public std::true_type { };

// Mark set as a container
template<typename T, typename TTraits, typename TAllocator> struct is_container<std::set<T, TTraits, TAllocator> > : public std::true_type { };

// Mark map as a container
template<typename TKey, typename TValue, typename TTraits, typename TAllocator> struct is_container<std::map<TKey, TValue, TTraits, TAllocator> > : public std::true_type { };

// Holds the delimiter values for a specific character type
template<typename TChar>
struct delimiters_values
{
    typedef TChar char_type;
    const TChar *prefix;
    const TChar *delimiter;
    const TChar *postfix;
};

// Defines the delimiter values for a specific container and character type
template<typename T, typename TChar>
struct delimiters
{
    static const delimiters_values<TChar> values; 
};

// Default delimiters
template<typename T> struct delimiters<T, char> { static const delimiters_values<char> values; };
template<typename T> const delimiters_values<char> delimiters<T, char>::values = { "{ ", ", ", " }" };
template<typename T> struct delimiters<T, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T> const delimiters_values<wchar_t> delimiters<T, wchar_t>::values = { L"{ ", L", ", L" }" };

// Delimiters for set
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, char> { static const delimiters_values<char> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<char> delimiters<std::set<T, TTraits, TAllocator>, char>::values = { "[ ", ", ", " ]" };
template<typename T, typename TTraits, typename TAllocator> struct delimiters<std::set<T, TTraits, TAllocator>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T, typename TTraits, typename TAllocator> const delimiters_values<wchar_t> delimiters<std::set<T, TTraits, TAllocator>, wchar_t>::values = { L"[ ", L", ", L" ]" };

// Delimiters for pair
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, char> { static const delimiters_values<char> values; };
template<typename T1, typename T2> const delimiters_values<char> delimiters<std::pair<T1, T2>, char>::values = { "(", ", ", ")" };
template<typename T1, typename T2> struct delimiters<std::pair<T1, T2>, wchar_t> { static const delimiters_values<wchar_t> values; };
template<typename T1, typename T2> const delimiters_values<wchar_t> delimiters<std::pair<T1, T2>, wchar_t>::values = { L"(", L", ", L")" };

// Functor to print containers. You can use this directly if you want to specificy a non-default delimiters type.
template<typename T, typename TChar = char, typename TCharTraits = std::char_traits<TChar>, typename TDelimiters = delimiters<T, TChar> >
struct print_container_helper
{
    typedef TChar char_type;
    typedef TDelimiters delimiters_type;
    typedef std::basic_ostream<TChar, TCharTraits>& ostream_type;

    print_container_helper(const T &container)
        : _container(&container)
    {
    }

    void operator()(ostream_type &stream) const
    {
        if( delimiters_type::values.prefix != NULL )
            stream << delimiters_type::values.prefix;
        std::copy(_container->begin(), _container->end(), pretty_ostream_iterator<typename T::value_type, TChar, TCharTraits>(stream, delimiters_type::values.delimiter));
        if( delimiters_type::values.postfix != NULL )
            stream << delimiters_type::values.postfix;
    }
private:
    const T *_container;
};

// Prints a print_container_helper to the specified stream.
template<typename T, typename TChar, typename TCharTraits, typename TDelimiters>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const print_container_helper<T, TChar, TDelimiters> &helper)
{
    helper(stream);
    return stream;
}

// Prints a container to the stream using default delimiters
template<typename T, typename TChar, typename TCharTraits>
typename std::enable_if<is_container<T>::value, std::basic_ostream<TChar, TCharTraits>&>::type
    operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const T &container)
{
    stream << print_container_helper<T, TChar, TCharTraits>(container);
    return stream;
}

// Prints a pair to the stream using delimiters from delimiters<std::pair<T1, T2>>.
template<typename T1, typename T2, typename TChar, typename TCharTraits>
std::basic_ostream<TChar, TCharTraits>& operator<<(std::basic_ostream<TChar, TCharTraits> &stream, const std::pair<T1, T2> &value)
{
    if( delimiters<std::pair<T1, T2>, TChar>::values.prefix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.prefix;

    stream << value.first;

    if( delimiters<std::pair<T1, T2>, TChar>::values.delimiter != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.delimiter;

    stream << value.second;

    if( delimiters<std::pair<T1, T2>, TChar>::values.postfix != NULL )
        stream << delimiters<std::pair<T1, T2>, TChar>::values.postfix;
    return stream;    
}

// Used by the sample below to generate some values
struct fibonacci
{
    fibonacci() : f1(0), f2(1) { }
    int operator()()
    {
        int r = f1 + f2;
        f1 = f2;
        f2 = r;
        return f1;
    }
private:
    int f1;
    int f2;
};

int main()
{
    std::vector<int> v;
    std::generate_n(std::back_inserter(v), 10, fibonacci());

    std::cout << v << std::endl;

    // Example of using pretty_ostream_iterator directly
    std::generate_n(pretty_ostream_iterator<int>(std::cout, ";"), 20, fibonacci());
    std::cout << std::endl;
}

Al igual que la versión de Marcelo, utiliza un rasgo de tipo is_container que debe estar especializado para todos los contenedores que se admitirán. Puede ser posible utilizar un rasgo para comprobar value_type, const_iterator, begin()/ end(), pero no estoy seguro de que lo recomiendo que ya que podría coincidir con las cosas que responden a esos criterios, pero en realidad no son contenedores, al igual que std::basic_string. También, como la versión de Marcelo, utiliza plantillas que pueden especializarse para especificar los delimitadores que se utilizarán.

La principal diferencia es que he creado mi versión en torno a un pretty_ostream_iterator, que funciona de manera similar al std::ostream_iteratorpero no imprime un delimitador después del último elemento. El formateo de los contenedores se realiza mediante print_container_helper, que se puede usar directamente para imprimir contenedores sin un rasgo is_container, o para especificar un tipo de delimitador diferente.

También he definido is_container y delimitadores para que funcione para contenedores con predicados o asignadores no estándar, y para char y wchar_t. La función de operador << en sí misma también está definida para trabajar con secuencias char y wchar_t.

Finalmente, he usado std::enable_if, que está disponible como parte de C ++ 0x, y funciona en Visual C ++ 2010 y g ++ 4.3 (necesita el indicador -std = c ++ 0x) y posteriores. De esta manera no hay dependencia en Boost.

Sven
fuente
Si estoy leyendo esto correctamente, para que un par se imprima como <i, j>en una función y como [i j]en otra, ¿tiene que definir un tipo completamente nuevo, con un puñado de miembros estáticos para pasar ese tipo print_container_helper? Eso parece demasiado complejo. ¿Por qué no elegir un objeto real, con campos que puede establecer caso por caso y las especializaciones simplemente proporcionan diferentes valores predeterminados?
Dennis Zickefoose
Véalo de esta manera: si hay un montón de delimitadores que le gustan personalmente, puede hacer un par de clases con miembros estáticos de una vez por todas y luego usarlas. Por supuesto, tienes razón en que usar print_container_helperno es tan elegante como solo el operator<<. Siempre puede cambiar la fuente, por supuesto, o simplemente agregar especializaciones explícitas para su contenedor favorito, por ejemplo, para pair<int, int>y para pair<double, string>. En última instancia, se trata de sopesar el poder contra la conveniencia. Sugerencias para mejorar ¡bienvenido!
Kerrek SB
... y para seguir con eso, si ya necesita una impresión situacional del mismo tipo de datos en diferentes formatos, probablemente tendrá que escribir al menos un pequeño contenedor de todos modos. Esta no es una biblioteca de formato altamente configurable, sino más bien una biblioteca sensible al valor predeterminado de esfuerzo cero que mágicamente le permite imprimir contenedores sin pensar ... (Pero si desea una mayor flexibilidad global , probablemente podríamos agregar algunos #macros para hacer los valores predeterminados fáciles de manipular.)
Kerrek SB
El verdadero problema es que, aunque podría modificar fácilmente print_container_helper para usar parámetros para los delimitadores personalizados, no hay realmente ninguna forma de especificar delimitadores para un contenedor interno (o par) que no sea especializar la plantilla de delimitadores. Lograr eso sería muy complicado.
Sven
Casi estoy logrando lograr una solución conveniente de delimitador personalizado usando el borrado de tipo. Si ya tienes una clase de delimitador MyDels, entonces puedo decir std::cout << CustomPrinter<MyDels>(x);. Lo que no puedo hacer en este momento es decir std::cout << CustomDelims<"{", ":", "}">(x);, porque no puedes tener const char *argumentos de plantilla. La decisión de hacer que los delimitadores sean constantes en el tiempo de compilación impone algunas restricciones a la facilidad de uso, pero creo que vale la pena.
Kerrek SB
22

Esto ha sido editado varias veces, y hemos decidido llamar a la clase principal que envuelve una colección RangePrinter

Esto debería funcionar automáticamente con cualquier colección una vez que haya escrito la sobrecarga del operador único <<, excepto que necesitará una especial para los mapas para imprimir el par, y puede que desee personalizar el delimitador allí.

También podría tener una función especial "imprimir" para usar en el elemento en lugar de simplemente enviarlo directamente. Un poco como los algoritmos STL le permiten pasar predicados personalizados. Con map lo usaría de esta manera, con una impresora personalizada para el par std ::.

Su impresora "predeterminada" simplemente la enviará a la transmisión.

Ok, trabajemos en una impresora personalizada. Cambiaré mi clase externa a RangePrinter. Entonces tenemos 2 iteradores y algunos delimitadores, pero no hemos personalizado cómo imprimir los elementos reales.

struct DefaultPrinter
{
   template< typename T >
   std::ostream & operator()( std::ostream& os, const T& t ) const
   {
     return os << t;
   }

   // overload for std::pair
   template< typename K, typename V >
   std::ostream & operator()( std::ostream & os, std::pair<K,V> const& p)
   {
      return os << p.first << '=' << p.second;
   }
};

// some prototypes
template< typename FwdIter, typename Printer > class RangePrinter;

template< typename FwdIter, typename Printer > 
  std::ostream & operator<<( std::ostream &, 
        RangePrinter<FwdIter, Printer> const& );

template< typename FwdIter, typename Printer=DefaultPrinter >
class RangePrinter
{
    FwdIter begin;
    FwdIter end;
    std::string delim;
    std::string open;
    std::string close;
    Printer printer;

    friend std::ostream& operator<< <>( std::ostream&, 
         RangePrinter<FwdIter,Printer> const& );

public:
    RangePrinter( FwdIter b, FwdIter e, Printer p,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), printer( p ), open( o ), close( c )
    {
    } 

     // with no "printer" variable
    RangePrinter( FwdIter b, FwdIter e,
         std::string const& d, std::string const & o, std::string const& c )
      : begin( b ), end( e ), open( o ), close( c )
    {
    } 

};


template<typename FwdIter, typename Printer>
std::ostream& operator<<( std::ostream& os, 
          RangePrinter<FwdIter, Printer> const& range )
{
    const Printer & printer = range.printer;

    os << range.open;
    FwdIter begin = range.begin, end = range.end;

    // print the first item
    if (begin == end) 
    { 
      return os << range.close; 
    }

    printer( os, *begin );

    // print the rest with delim as a prefix
    for( ++begin; begin != end; ++begin )
    {
       os << range.delim;
       printer( os, *begin );
    }
    return os << range.close;
}

Ahora, de manera predeterminada, funcionará para los mapas siempre que los tipos de clave y valor sean imprimibles y pueda colocar su propia impresora de elementos especiales para cuando no lo sean (como puede hacerlo con cualquier otro tipo), o si no desea = como delimitador.

Estoy moviendo la función libre para crearlos hasta el final ahora:

Una función libre (versión iteradora) se vería algo así e incluso podría tener valores predeterminados:

template<typename Collection>
RangePrinter<typename Collection::const_iterator> rangePrinter
    ( const Collection& coll, const char * delim=",", 
       const char * open="[", const char * close="]")
{
   return RangePrinter< typename Collection::const_iterator >
     ( coll.begin(), coll.end(), delim, open, close );
}

Luego puede usarlo para std :: establecido por

 std::cout << outputFormatter( mySet );

También puede escribir una versión de función libre que tome una impresora personalizada y otras que tomen dos iteradores. En cualquier caso, resolverán los parámetros de la plantilla por usted y podrá pasarlos como temporales.

CashCow
fuente
Veo. Esto es similar a la idea de Marcelo Cantos, ¿no? Intentaré convertir esto en un ejemplo de trabajo, ¡gracias!
Kerrek SB
Encuentro esta solución mucho más limpia que la de Marcelo, y ofrece la misma flexibilidad. Me gusta el aspecto que uno tiene para envolver explícitamente la salida en una llamada de función. Para ser realmente genial, podría agregar soporte para generar un rango de iteradores directamente, para que pueda hacerlo std::cout << outputFormatter(beginOfRange, endOfRange);.
Björn Pollex
1
@CashCow: hay un problema con esta solución, no parece funcionar con colecciones recursivas (es decir, colecciones de colecciones). std::pairEs el ejemplo más básico de "colección interior".
Matthieu M.
Me gusta mucho esta respuesta, ya que no tiene dependencias y no necesita saber sobre los contenedores que admite. ¿Podemos averiguar si puede manejar std::maps fácilmente y si funciona para colecciones de colecciones? Sin embargo, estoy tentado a aceptar esta como respuesta. Espero que a Marcelo no le importe, su solución también funciona.
Kerrek SB
@Matthieu M. Depende de cómo imprima la colección interior. Si solo usa os << abrir << * iter << cerrar, entonces tendrá un problema, pero si permite que su usuario pase una impresora personalizada como le he sugerido, puede imprimir lo que quiera.
CashCow
14

Aquí hay una biblioteca de trabajo, presentada como un programa de trabajo completo, que acabo de piratear juntos:

#include <set>
#include <vector>
#include <iostream>

#include <boost/utility/enable_if.hpp>

// Default delimiters
template <class C> struct Delims { static const char *delim[3]; };
template <class C> const char *Delims<C>::delim[3]={"[", ", ", "]"};
// Special delimiters for sets.                                                                                                             
template <typename T> struct Delims< std::set<T> > { static const char *delim[3]; };
template <typename T> const char *Delims< std::set<T> >::delim[3]={"{", ", ", "}"};

template <class C> struct IsContainer { enum { value = false }; };
template <typename T> struct IsContainer< std::vector<T> > { enum { value = true }; };
template <typename T> struct IsContainer< std::set<T>    > { enum { value = true }; };

template <class C>
typename boost::enable_if<IsContainer<C>, std::ostream&>::type
operator<<(std::ostream & o, const C & x)
{
  o << Delims<C>::delim[0];
  for (typename C::const_iterator i = x.begin(); i != x.end(); ++i)
    {
      if (i != x.begin()) o << Delims<C>::delim[1];
      o << *i;
    }
  o << Delims<C>::delim[2];
  return o;
}

template <typename T> struct IsChar { enum { value = false }; };
template <> struct IsChar<char> { enum { value = true }; };

template <typename T, int N>
typename boost::disable_if<IsChar<T>, std::ostream&>::type
operator<<(std::ostream & o, const T (&x)[N])
{
  o << "[";
  for (int i = 0; i != N; ++i)
    {
      if (i) o << ",";
      o << x[i];
    }
  o << "]";
  return o;
}

int main()
{
  std::vector<int> i;
  i.push_back(23);
  i.push_back(34);

  std::set<std::string> j;
  j.insert("hello");
  j.insert("world");

  double k[] = { 1.1, 2.2, M_PI, -1.0/123.0 };

  std::cout << i << "\n" << j << "\n" << k << "\n";
}

Actualmente solo funciona con vectory set, pero se puede hacer que funcione con la mayoría de los contenedores, simplemente ampliando las IsContainerespecializaciones. No he pensado mucho sobre si este código es mínimo, pero no puedo pensar de inmediato en nada que pueda eliminar como redundante.

EDITAR: Solo por diversión, incluí una versión que maneja matrices. Tuve que excluir las matrices de caracteres para evitar más ambigüedades; aún podría meterse en problemas con wchar_t[].

Marcelo Cantos
fuente
2
@Nawaz: Como dije, esto es solo el comienzo de una solución. Podría apoyarlo std::map<>especializando el operador o definiendo un operator<<for std::pair<>.
Marcelo Cantos
Sin embargo, ¡+1 por usar Delimsla plantilla de clase!
Nawaz
@MC: Oh bien. ¡Esto se ve muy prometedor! (Por cierto, necesita devolver el tipo "std :: ostream &", lo había olvidado inicialmente.)
Kerrek SB
Hmm, tengo una "sobrecarga ambigua" cuando intento esto en un std :: vector <int> y std :: set <std :: string> ...
Kerrek SB
Sí, actualmente estoy descubriendo cómo prevenir las ambigüedades, que son causadas por el hecho de que la operator<<plantilla coincide con casi cualquier cosa.
Marcelo Cantos
10

Puede formatear contenedores, así como rangos y tuplas utilizando la biblioteca {fmt} . Por ejemplo:

#include <vector>
#include <fmt/ranges.h>

int main() {
  auto v = std::vector<int>{1, 2, 3};
  fmt::print("{}", v);
}

huellas dactilares

{1, 2, 3}

a stdout.

Descargo de responsabilidad : soy el autor de {fmt}.

vitaut
fuente
8

El código demostró ser útil en varias ocasiones ahora y siento que el gasto en personalización es bastante bajo. Por lo tanto, decidí lanzarlo bajo licencia MIT y proporcionar un repositorio de GitHub donde se pueda descargar el encabezado y un pequeño archivo de ejemplo.

http://djmuw.github.io/prettycc

0. Prefacio y redacción

Una 'decoración' en términos de esta respuesta es un conjunto de cadena de prefijo, cadena de delimitador y una cadena de postfijo. Donde la cadena de prefijo se inserta en una secuencia antes y la cadena de postfijo después de los valores de un contenedor (ver 2. Contenedores de destino). La cadena delimitador se inserta entre los valores del contenedor respectivo.

Nota: En realidad, esta respuesta no aborda la pregunta al 100% ya que la decoración no es estrictamente compilada en tiempo constante porque se requieren verificaciones de tiempo de ejecución para verificar si se ha aplicado una decoración personalizada a la secuencia actual. Sin embargo, creo que tiene algunas características decentes.

Nota 2: puede tener errores menores ya que aún no está bien probado.

1. Idea general / uso

Cero código adicional requerido para el uso

Debe mantenerse tan fácil como

#include <vector>
#include "pretty.h"

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints 1, 2, 3, 4, 5
  return 0;
}

Fácil personalización ...

... con respecto a un objeto de flujo específico

#include <vector>
#include "pretty.h"

int main()
{
  // set decoration for std::vector<int> for cout object
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

o con respecto a todas las transmisiones:

#include <vector>
#include "pretty.h"

// set decoration for std::vector<int> for all ostream objects
PRETTY_DEFAULT_DECORATION(std::vector<int>, "{", ", ", "}")

int main()
{
  std::cout << std::vector<int>{1,2,3,4,5}; // prints {1, 2, 3, 4, 5}
  std::cout << pretty::decoration<std::vector<int>>("(", ",", ")");
  std::cout << std::vector<int>{1,2,3,4,5}; // prints (1,2,3,4,5)
  return 0;
}

Descripción aproximada

  • El código incluye una plantilla de clase que proporciona una decoración predeterminada para cualquier tipo
  • que puede especializarse para cambiar la decoración predeterminada para (a) cierto tipo (s) y es
  • usando el almacenamiento privado provisto ios_baseusando xalloc/ pwordpara guardar un puntero a un pretty::decorobjeto que decora específicamente un determinado tipo en un flujo determinado.

Si no pretty::decor<T>se ha establecido explícitamente ningún objeto para esta secuencia, pretty::defaulted<T, charT, chartraitT>::decoration()se llama para obtener la decoración predeterminada para el tipo dado. La clase pretty::defaultedse especializará para personalizar decoraciones predeterminadas.

2. Objetos / contenedores de destino

Los objetos de destino objpara la 'bonita decoración' de este código son objetos que tienen

  • sobrecargas std::beginy std::enddefinidas (incluye matrices de estilo C),
  • teniendo begin(obj)y end(obj)disponible a través de ADL,
  • son de tipo std::tuple
  • o de tipo std::pair.

El código incluye un rasgo para la identificación de clases con características de rango ( begin/ end). (Sin begin(obj) == end(obj)embargo, no se incluye ninguna verificación, ya sea ​​una expresión válida).

El código proporciona operator<<s en el espacio de nombres global que solo se aplican a las clases que no tienen una versión más especializada de operator<<disponible. Por lo tanto, por ejemplo std::stringno se imprime usando el operador en este código a pesar de tener un válido begin/ endpar.

3. Utilización y personalización.

Las decoraciones se pueden imponer por separado para cada tipo (excepto diferentes tuples) y stream (¡no tipo de stream!). (Es decir, std::vector<int>puede tener diferentes decoraciones para diferentes objetos de flujo).

A) Decoración predeterminada

El prefijo predeterminado es ""(nada) como el postfix predeterminado, mientras que el delimitador predeterminado es ", "(coma + espacio).

B) Decoración predeterminada personalizada de un tipo especializando la pretty::defaultedplantilla de clase

El struct defaultedtiene una función miembro estático decoration()devolver un decorobjeto que incluye los valores predeterminados para el tipo dado.

Ejemplo usando una matriz:

Personalice la impresión de matriz predeterminada:

namespace pretty
{
  template<class T, std::size_t N>
  struct defaulted<T[N]>
  {
    static decor<T[N]> decoration()
    {
      return{ { "(" }, { ":" }, { ")" } };
    }
  };
}

Imprima una matriz de arry:

float e[5] = { 3.4f, 4.3f, 5.2f, 1.1f, 22.2f };
std::cout << e << '\n'; // prints (3.4:4.3:5.2:1.1:22.2)

Usando la PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...)macro para charflujos

La macro se expande a

namespace pretty { 
  template< __VA_ARGS__ >
  struct defaulted< TYPE > {
    static decor< TYPE > decoration() {
      return { PREFIX, DELIM, POSTFIX };
    } 
  }; 
} 

permitiendo reescribir la especialización parcial anterior a

PRETTY_DEFAULT_DECORATION(T[N], "", ";", "", class T, std::size_t N)

o insertando una especialización completa como

PRETTY_DEFAULT_DECORATION(std::vector<int>, "(", ", ", ")")

Se wchar_tincluye otra macro para transmisiones:PRETTY_DEFAULT_WDECORATION .

C) Imponer la decoración en los arroyos.

La función pretty::decoration se utiliza para imponer una decoración en una secuencia determinada. Hay sobrecargas que toman, ya sea un argumento de cadena que es el delimitador (adoptando el prefijo y el postfix de la clase predeterminada), o tres argumentos de cadena que ensamblan la decoración completa

Decoración completa para el tipo y flujo dado

float e[3] = { 3.4f, 4.3f, 5.2f };
std::stringstream u;
// add { ; } decoration to u
u << pretty::decoration<float[3]>("{", "; ", "}");

// use { ; } decoration
u << e << '\n'; // prints {3.4; 4.3; 5.2}

// uses decoration returned by defaulted<float[3]>::decoration()
std::cout << e; // prints 3.4, 4.3, 5.2

Personalización del delimitador para una secuencia dada

PRETTY_DEFAULT_DECORATION(float[3], "{{{", ",", "}}}")

std::stringstream v;
v << e; // prints {{{3.4,4.3,5.2}}}

v << pretty::decoration<float[3]>(":");
v << e; // prints {{{3.4:4.3:5.2}}}

v << pretty::decoration<float[3]>("((", "=", "))");
v << e; // prints ((3.4=4.3=5.2))

4. Manejo especial de std::tuple

En lugar de permitir una especialización para cada tipo de tupla posible, este código aplica cualquier decoración disponible para std::tuple<void*>todo tipo destd::tuple<...> s.

5. Eliminar la decoración personalizada de la secuencia

Para volver a la decoración predeterminada para un tipo determinado, use la pretty::clearplantilla de función en la secuencia s.

s << pretty::clear<std::vector<int>>();

5. Otros ejemplos

Impresión "matricial" con delimitador de nueva línea

std::vector<std::vector<int>> m{ {1,2,3}, {4,5,6}, {7,8,9} };
std::cout << pretty::decoration<std::vector<std::vector<int>>>("\n");
std::cout << m;

Huellas dactilares

1, 2, 3
4, 5, 6
7, 8, 9

Véalo en ideone / KKUebZ

6. Código

#ifndef pretty_print_0x57547_sa4884X_0_1_h_guard_
#define pretty_print_0x57547_sa4884X_0_1_h_guard_

#include <string>
#include <iostream>
#include <type_traits>
#include <iterator>
#include <utility>

#define PRETTY_DEFAULT_DECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE > {\
    static decor< TYPE > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

#define PRETTY_DEFAULT_WDECORATION(TYPE, PREFIX, DELIM, POSTFIX, ...) \
    namespace pretty { template< __VA_ARGS__ >\
    struct defaulted< TYPE, wchar_t, std::char_traits<wchar_t> > {\
    static decor< TYPE, wchar_t, std::char_traits<wchar_t> > decoration(){\
      return { PREFIX, DELIM, POSTFIX };\
    } /*decoration*/ }; /*defaulted*/} /*pretty*/

namespace pretty
{

  namespace detail
  {
    // drag in begin and end overloads
    using std::begin;
    using std::end;
    // helper template
    template <int I> using _ol = std::integral_constant<int, I>*;
    // SFINAE check whether T is a range with begin/end
    template<class T>
    class is_range
    {
      // helper function declarations using expression sfinae
      template <class U, _ol<0> = nullptr>
      static std::false_type b(...);
      template <class U, _ol<1> = nullptr>
      static auto b(U &v) -> decltype(begin(v), std::true_type());
      template <class U, _ol<0> = nullptr>
      static std::false_type e(...);
      template <class U, _ol<1> = nullptr>
      static auto e(U &v) -> decltype(end(v), std::true_type());
      // return types
      using b_return = decltype(b<T>(std::declval<T&>()));
      using e_return = decltype(e<T>(std::declval<T&>()));
    public:
      static const bool value = b_return::value && e_return::value;
    };
  }

  // holder class for data
  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct decor
  {
    static const int xindex;
    std::basic_string<CharT, TraitT> prefix, delimiter, postfix;
    decor(std::basic_string<CharT, TraitT> const & pre = "",
      std::basic_string<CharT, TraitT> const & delim = "",
      std::basic_string<CharT, TraitT> const & post = "")
      : prefix(pre), delimiter(delim), postfix(post) {}
  };

  template<class T, class charT, class traits>
  int const decor<T, charT, traits>::xindex = std::ios_base::xalloc();

  namespace detail
  {

    template<class T, class CharT, class TraitT>
    void manage_decor(std::ios_base::event evt, std::ios_base &s, int const idx)
    {
      using deco_type = decor<T, CharT, TraitT>;
      if (evt == std::ios_base::erase_event)
      { // erase deco
        void const * const p = s.pword(idx);
        if (p)
        {
          delete static_cast<deco_type const * const>(p);
          s.pword(idx) = nullptr;
        }
      }
      else if (evt == std::ios_base::copyfmt_event)
      { // copy deco
        void const * const p = s.pword(idx);
        if (p)
        {
          auto np = new deco_type{ *static_cast<deco_type const * const>(p) };
          s.pword(idx) = static_cast<void*>(np);
        }
      }
    }

    template<class T> struct clearer {};

    template<class T, class CharT, class TraitT>
    std::basic_ostream<CharT, TraitT>& operator<< (
      std::basic_ostream<CharT, TraitT> &s, clearer<T> const &)
    {
      using deco_type = decor<T, CharT, TraitT>;
      void const * const p = s.pword(deco_type::xindex);
      if (p)
      { // delete if set
        delete static_cast<deco_type const *>(p);
        s.pword(deco_type::xindex) = nullptr;
      }
      return s;
    }

    template <class CharT> 
    struct default_data { static const CharT * decor[3]; };
    template <> 
    const char * default_data<char>::decor[3] = { "", ", ", "" };
    template <> 
    const wchar_t * default_data<wchar_t>::decor[3] = { L"", L", ", L"" };

  }

  // Clear decoration for T
  template<class T>
  detail::clearer<T> clear() { return{}; }
  template<class T, class CharT, class TraitT>
  void clear(std::basic_ostream<CharT, TraitT> &s) { s << detail::clearer<T>{}; }

  // impose decoration on ostream
  template<class T, class CharT, class TraitT>
  std::basic_ostream<CharT, TraitT>& operator<<(
    std::basic_ostream<CharT, TraitT> &s, decor<T, CharT, TraitT> && h)
  {
    using deco_type = decor<T, CharT, TraitT>;
    void const * const p = s.pword(deco_type::xindex);
    // delete if already set
    if (p) delete static_cast<deco_type const *>(p);
    s.pword(deco_type::xindex) = static_cast<void *>(new deco_type{ std::move(h) });
    // check whether we alread have a callback registered
    if (s.iword(deco_type::xindex) == 0)
    { // if this is not the case register callback and set iword
      s.register_callback(detail::manage_decor<T, CharT, TraitT>, deco_type::xindex);
      s.iword(deco_type::xindex) = 1;
    }
    return s;
  }

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  struct defaulted
  {
    static inline decor<T, CharT, TraitT> decoration()
    {
      return{ detail::default_data<CharT>::decor[0],
        detail::default_data<CharT>::decor[1],
        detail::default_data<CharT>::decor[2] };
    }
  };

  template<class T, class CharT = char, class TraitT = std::char_traits<CharT>>
  decor<T, CharT, TraitT> decoration(
    std::basic_string<CharT, TraitT> const & prefix,
    std::basic_string<CharT, TraitT> const & delimiter,
    std::basic_string<CharT, TraitT> const & postfix)
  {
    return{ prefix, delimiter, postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(
      std::basic_string<CharT, TraitT> const & delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      delimiter, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const prefix,
      CharT const * const delimiter, CharT const * const postfix)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ str_type{ prefix }, str_type{ delimiter }, str_type{ postfix } };
  }

  template<class T, class CharT = char,
  class TraitT = std::char_traits < CharT >>
    decor<T, CharT, TraitT> decoration(CharT const * const delimiter)
  {
    using str_type = std::basic_string<CharT, TraitT>;
    return{ defaulted<T, CharT, TraitT>::decoration().prefix,
      str_type{ delimiter }, defaulted<T, CharT, TraitT>::decoration().postfix };
  }

  template<typename T, std::size_t N, std::size_t L>
  struct tuple
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &delimiter)
    {
      s << std::get<N>(value) << delimiter;
      tuple<T, N + 1, L>::print(s, value, delimiter);
    }
  };

  template<typename T, std::size_t N>
  struct tuple<T, N, N>
  {
    template<class CharT, class TraitT>
    static void print(std::basic_ostream<CharT, TraitT>& s, T const & value,
      std::basic_string<CharT, TraitT> const &) {
      s << std::get<N>(value);
    }
  };

}

template<class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class CharT, class TraitT, class ... T>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::tuple<T...> const & v)
{
  using deco_type = pretty::decor<std::tuple<void*>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::tuple<void*>, CharT, TraitT>;
  using pretty_tuple = pretty::tuple<std::tuple<T...>, 0U, sizeof...(T)-1U>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  pretty_tuple::print(s, v, d ? d->delimiter : 
    defaulted_type::decoration().delimiter);
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}

template<class T, class U, class CharT, class TraitT>
std::basic_ostream<CharT, TraitT> & operator<< (
  std::basic_ostream<CharT, TraitT> &s, std::pair<T, U> const & v)
{
  using deco_type = pretty::decor<std::pair<T, U>, CharT, TraitT>;
  using defaulted_type = pretty::defaulted<std::pair<T, U>, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto const d = static_cast<deco_type const * const>(p);
  s << (d ? d->prefix : defaulted_type::decoration().prefix);
  s << v.first;
  s << (d ? d->delimiter : defaulted_type::decoration().delimiter);
  s << v.second;
  s << (d ? d->postfix : defaulted_type::decoration().postfix);
  return s;
}


template<class T, class CharT = char,
class TraitT = std::char_traits < CharT >>
  typename std::enable_if < pretty::detail::is_range<T>::value,
  std::basic_ostream < CharT, TraitT >> ::type & operator<< (
    std::basic_ostream<CharT, TraitT> &s, T const & v)
{
  bool first(true);
  using deco_type = pretty::decor<T, CharT, TraitT>;
  using default_type = pretty::defaulted<T, CharT, TraitT>;
  void const * const p = s.pword(deco_type::xindex);
  auto d = static_cast<pretty::decor<T, CharT, TraitT> const * const>(p);
  s << (d ? d->prefix : default_type::decoration().prefix);
  for (auto const & e : v)
  { // v is range thus range based for works
    if (!first) s << (d ? d->delimiter : default_type::decoration().delimiter);
    s << e;
    first = false;
  }
  s << (d ? d->postfix : default_type::decoration().postfix);
  return s;
}

#endif // pretty_print_0x57547_sa4884X_0_1_h_guard_
Pixelchemist
fuente
4

Voy a agregar otra respuesta aquí, porque se me ocurrió un enfoque diferente al anterior, y eso es usar facetas locales.

Lo básico está aquí.

Esencialmente, lo que haces es:

  1. Crear una clase que se derive de std::locale::facet . El pequeño inconveniente es que necesitará una unidad de compilación en algún lugar para mantener su identificación. Llamémoslo MyPrettyVectorPrinter. Probablemente le darías un nombre mejor, y también crearías uno para pares y mapas.
  2. En su función de transmisión, verifica std::has_facet< MyPrettyVectorPrinter >
  3. Si eso devuelve verdadero, extráigalo con std::use_facet< MyPrettyVectorPrinter >( os.getloc() )
  4. Sus objetos de faceta tendrán valores para los delimitadores y podrá leerlos. Si no se encuentra la faceta, su función de impresión ( operator<<) proporciona las predeterminadas. Tenga en cuenta que puede hacer lo mismo para leer un vector.

Me gusta este método porque puede usar una impresión predeterminada mientras aún puede usar una anulación personalizada.

Las desventajas son la necesidad de una biblioteca para su faceta si se usa en múltiples proyectos (por lo que no solo pueden ser encabezados) y también el hecho de que debe tener cuidado con el costo de crear un nuevo objeto de entorno local.

He escrito esto como una nueva solución en lugar de modificar la otra porque creo que ambos enfoques pueden ser correctos y tú eliges.

CashCow
fuente
Permítanme aclarar esto: con este enfoque, ¿necesito incluir activamente en la lista blanca cada tipo de contenedor que quiero usar?
Kerrek SB
Bueno, realmente no se debe extender std que no sea para los propios tipos, pero se escribe una sobrecarga de operador << para cada tipo de contenedor (vector, mapa, lista, deque) más par que desea poder imprimir. Por supuesto, algunos pueden compartir una faceta (por ejemplo, es posible que desee imprimir la lista, el vector y la eliminación de todos modos). Proporciona un método de impresión "predeterminado" pero permite a los usuarios crear una faceta y un entorno local e imbuirlos antes de imprimir. Un poco como la forma en que boost imprime su fecha y hora. También se puede cargar su faceta en la configuración regional global para imprimir de esa manera de forma predeterminada.
CashCow
2

El objetivo aquí es usar ADL para personalizar la forma en que imprimimos.

Pasa una etiqueta de formateador y anula 4 funciones (antes, después, entre y descender) en el espacio de nombres de la etiqueta. Esto cambia la forma en que el formateador imprime 'adornos' al iterar sobre los contenedores.

Un formateador predeterminado que funciona {(a->b),(c->d)}para mapas, (a,b,c)para tupleoides, "hello"para cadenas, [x,y,z]para todo lo demás incluido.

Debería "funcionar" con tipos iterables de terceros (y tratarlos como "todo lo demás").

Si desea adornos personalizados para sus iterables de terceros, simplemente cree su propia etiqueta. Tomará un poco de trabajo manejar el descenso del mapa (necesita sobrecargar pretty_print_descend( your_tagpara regresar pretty_print::decorator::map_magic_tag<your_tag>). Tal vez hay una forma más limpia de hacer esto, no estoy seguro.

Una pequeña biblioteca para detectar la iterabilidad y la tupla:

namespace details {
  using std::begin; using std::end;
  template<class T, class=void>
  struct is_iterable_test:std::false_type{};
  template<class T>
  struct is_iterable_test<T,
    decltype((void)(
      (void)(begin(std::declval<T>())==end(std::declval<T>()))
      , ((void)(std::next(begin(std::declval<T>()))))
      , ((void)(*begin(std::declval<T>())))
      , 1
    ))
  >:std::true_type{};
  template<class T>struct is_tupleoid:std::false_type{};
  template<class...Ts>struct is_tupleoid<std::tuple<Ts...>>:std::true_type{};
  template<class...Ts>struct is_tupleoid<std::pair<Ts...>>:std::true_type{};
  // template<class T, size_t N>struct is_tupleoid<std::array<T,N>>:std::true_type{}; // complete, but problematic
}
template<class T>struct is_iterable:details::is_iterable_test<std::decay_t<T>>{};
template<class T, std::size_t N>struct is_iterable<T(&)[N]>:std::true_type{}; // bypass decay
template<class T>struct is_tupleoid:details::is_tupleoid<std::decay_t<T>>{};

template<class T>struct is_visitable:std::integral_constant<bool, is_iterable<T>{}||is_tupleoid<T>{}> {};

Una biblioteca que nos permite visitar el contenido de un objeto de tipo iterable o tupla:

template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto&& b = begin(c);
  auto&& e = end(c);
  if (b==e)
      return;
  std::forward<F>(f)(*b);
}
template<class C, class F>
std::enable_if_t<is_iterable<C>{}> visit_all_but_first(C&& c, F&& f) {
  using std::begin; using std::end;
  auto it = begin(c);
  auto&& e = end(c);
  if (it==e)
      return;
  it = std::next(it);
  for( ; it!=e; it = std::next(it) ) {
    f(*it);
  }
}

namespace details {
  template<class Tup, class F>
  void visit_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is, class Tup, class F>
  void visit_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    std::forward<F>(f)( std::get<0>( std::forward<Tup>(tup) ) );
  }
  template<class Tup, class F>
  void visit_all_but_first( std::index_sequence<>, Tup&&, F&& ) {}
  template<size_t... Is,class Tup, class F>
  void visit_all_but_first( std::index_sequence<0,Is...>, Tup&& tup, F&& f ) {
    int unused[] = {0,((void)(
      f( std::get<Is>(std::forward<Tup>(tup)) )
    ),0)...};
    (void)(unused);
  }
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_first(Tup&& tup, F&& f) {
  details::visit_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}
template<class Tup, class F>
std::enable_if_t<is_tupleoid<Tup>{}> visit_all_but_first(Tup&& tup, F&& f) {
  details::visit_all_but_first( std::make_index_sequence< std::tuple_size<std::decay_t<Tup>>{} >{}, std::forward<Tup>(tup), std::forward<F>(f) );
}

Una bonita biblioteca de impresión:

namespace pretty_print {
  namespace decorator {
    struct default_tag {};
    template<class Old>
    struct map_magic_tag:Old {}; // magic for maps

    // Maps get {}s. Write trait `is_associative` to generalize:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('{');
    }

    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::map<Xs...> const& ) {
      s << CharT('}');
    }

    // tuples and pairs get ():
    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT('(');
    }

    template<class CharT, class Traits, class Tup >
    std::enable_if_t<is_tupleoid<Tup>{}> pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, Tup const& ) {
      s << CharT(')');
    }

    // strings with the same character type get ""s:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_before( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    template<class CharT, class Traits, class...Xs >
    void pretty_print_after( default_tag, std::basic_ostream<CharT, Traits>& s, std::basic_string<CharT, Xs...> const& ) {
      s << CharT('"');
    }
    // and pack the characters together:
    template<class CharT, class Traits, class...Xs >
    void pretty_print_between( default_tag, std::basic_ostream<CharT, Traits>&, std::basic_string<CharT, Xs...> const& ) {}

    // map magic. When iterating over the contents of a map, use the map_magic_tag:
    template<class...Xs>
    map_magic_tag<default_tag> pretty_print_descend( default_tag, std::map<Xs...> const& ) {
      return {};
    }
    template<class old_tag, class C>
    old_tag pretty_print_descend( map_magic_tag<old_tag>, C const& ) {
      return {};
    }

    // When printing a pair immediately within a map, use -> as a separator:
    template<class old_tag, class CharT, class Traits, class...Xs >
    void pretty_print_between( map_magic_tag<old_tag>, std::basic_ostream<CharT, Traits>& s, std::pair<Xs...> const& ) {
      s << CharT('-') << CharT('>');
    }
  }

  // default behavior:
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_before( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT('[');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_after( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(']');
  }
  template<class CharT, class Traits, class Tag, class Container >
  void pretty_print_between( Tag const&, std::basic_ostream<CharT, Traits>& s, Container const& ) {
    s << CharT(',');
  }
  template<class Tag, class Container>
  Tag&& pretty_print_descend( Tag&& tag, Container const& ) {
    return std::forward<Tag>(tag);
  }

  // print things by default by using <<:
  template<class Tag=decorator::default_tag, class Scalar, class CharT, class Traits>
  std::enable_if_t<!is_visitable<Scalar>{}> print( std::basic_ostream<CharT, Traits>& os, Scalar&& scalar, Tag&&=Tag{} ) {
    os << std::forward<Scalar>(scalar);
  }
  // for anything visitable (see above), use the pretty print algorithm:
  template<class Tag=decorator::default_tag, class C, class CharT, class Traits>
  std::enable_if_t<is_visitable<C>{}> print( std::basic_ostream<CharT, Traits>& os, C&& c, Tag&& tag=Tag{} ) {
    pretty_print_before( std::forward<Tag>(tag), os, std::forward<C>(c) );
    visit_first( c, [&](auto&& elem) {
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    visit_all_but_first( c, [&](auto&& elem) {
      pretty_print_between( std::forward<Tag>(tag), os, std::forward<C>(c) );
      print( os, std::forward<decltype(elem)>(elem), pretty_print_descend( std::forward<Tag>(tag), std::forward<C>(c) ) );
    });
    pretty_print_after( std::forward<Tag>(tag), os, std::forward<C>(c) );
  }
}

Código de prueba:

int main() {
  std::vector<int> x = {1,2,3};

  pretty_print::print( std::cout, x );
  std::cout << "\n";

  std::map< std::string, int > m;
  m["hello"] = 3;
  m["world"] = 42;

  pretty_print::print( std::cout, m );
  std::cout << "\n";
}

ejemplo en vivo

Esto usa características de C ++ 14 (algunos _talias y auto&&lambdas), pero ninguna es esencial.

Yakk - Adam Nevraumont
fuente
@KerrekSB versión de trabajo, con algunos cambios. La mayor parte del código es "tuplas de visita / iterables" generales y un formato sofisticado (incluso ->dentro de las pairs de maps) en este punto. El núcleo de la bonita biblioteca de impresión es agradable y pequeño, lo cual es agradable. Traté de hacerlo fácilmente extensible, no estoy seguro si lo logré.
Yakk - Adam Nevraumont
1

Mi solución es simple.h , que forma parte del paquete scc . Todos los contenedores estándar, mapas, conjuntos, matrices c son imprimibles.

Leonid Volnitsky
fuente
Interesante. Me gusta el enfoque de plantilla de plantilla para contenedores, pero ¿funciona para contenedores personalizados y contenedores STL con predicados o asignadores no estándar? (Hice algo similar para intentar implementar un bimap en C ++ 0x usando plantillas variadas). Además, no parece utilizar iteradores genéricamente para sus rutinas de impresión; ¿Por qué el uso explícito de un contador i?
Kerrek SB
¿Qué es el contenedor con predicados no estándar? Se imprimirá un contenedor personalizado que coincida con la firma. Los asignadores no estándar no son compatibles en este momento, pero es fácil de solucionar. Simplemente no necesito esto por ahora.
Leonid Volnitsky
No hay una buena razón para usar index en lugar de iteradores. Razones históricas. Lo arreglará cuando tenga tiempo.
Leonid Volnitsky
Por "contenedor con predicados no estándar" me refiero a algo como un std::setcon un comparador personalizado, o un_orden_map con una igualdad personalizada. Sería muy importante apoyar esas construcciones.
Kerrek SB
1

Al salir de uno de los primeros BoostCon (ahora llamado CppCon), yo y otros dos trabajamos en una biblioteca para hacer precisamente esto. El principal problema era la necesidad de ampliar el espacio de nombres estándar. Resultó ser un no-go para una biblioteca de impulso.

Desafortunadamente, los enlaces al código ya no funcionan, pero es posible que encuentres algunos datos interesantes en las discusiones (¡al menos aquellos que no hablan sobre cómo nombrarlo!)

http://boost.2283326.n4.nabble.com/explore-Library-Proposal-Container-Streaming-td2619544.html

Jeffrey Faust
fuente
0

Aquí está mi versión de implementación realizada en 2016

Todo en un encabezado, por lo que es fácil de usar https://github.com/skident/eos/blob/master/include/eos/io/print.hpp

/*! \file       print.hpp
 *  \brief      Useful functions for work with STL containers. 
 *          
 *  Now it supports generic print for STL containers like: [elem1, elem2, elem3]
 *  Supported STL conrainers: vector, deque, list, set multiset, unordered_set,
 *  map, multimap, unordered_map, array
 *
 *  \author     Skident
 *  \date       02.09.2016
 *  \copyright  Skident Inc.
 */

#pragma once

// check is the C++11 or greater available (special hack for MSVC)
#if (defined(_MSC_VER) && __cplusplus >= 199711L) || __cplusplus >= 201103L
    #define MODERN_CPP_AVAILABLE 1
#endif


#include <iostream>
#include <sstream>
#include <vector>
#include <deque>
#include <set>
#include <list>
#include <map>
#include <cctype>

#ifdef MODERN_CPP_AVAILABLE
    #include <array>
    #include <unordered_set>
    #include <unordered_map>
    #include <forward_list>
#endif


#define dump(value) std::cout << (#value) << ": " << (value) << std::endl

#define BUILD_CONTENT                                                       \
        std::stringstream ss;                                               \
        for (; it != collection.end(); ++it)                                \
        {                                                                   \
            ss << *it << elem_separator;                                    \
        }                                                                   \


#define BUILD_MAP_CONTENT                                                   \
        std::stringstream ss;                                               \
        for (; it != collection.end(); ++it)                                \
        {                                                                   \
            ss  << it->first                                                \
                << keyval_separator                                         \
                << it->second                                               \
                << elem_separator;                                          \
        }                                                                   \


#define COMPILE_CONTENT                                                     \
        std::string data = ss.str();                                        \
        if (!data.empty() && !elem_separator.empty())                       \
            data = data.substr(0, data.rfind(elem_separator));              \
        std::string result = first_bracket + data + last_bracket;           \
        os << result;                                                       \
        if (needEndl)                                                       \
            os << std::endl;                                                \



////
///
///
/// Template definitions
///
///

//generic template for classes: deque, list, forward_list, vector
#define VECTOR_AND_CO_TEMPLATE                                          \
    template<                                                           \
        template<class T,                                               \
                 class Alloc = std::allocator<T> >                      \
        class Container, class Type, class Alloc>                       \

#define SET_TEMPLATE                                                    \
    template<                                                           \
        template<class T,                                               \
                 class Compare = std::less<T>,                          \
                 class Alloc = std::allocator<T> >                      \
            class Container, class T, class Compare, class Alloc>       \

#define USET_TEMPLATE                                                   \
    template<                                                           \
template < class Key,                                                   \
           class Hash = std::hash<Key>,                                 \
           class Pred = std::equal_to<Key>,                             \
           class Alloc = std::allocator<Key>                            \
           >                                                            \
    class Container, class Key, class Hash, class Pred, class Alloc     \
    >                                                                   \


#define MAP_TEMPLATE                                                    \
    template<                                                           \
        template<class Key,                                             \
                class T,                                                \
                class Compare = std::less<Key>,                         \
                class Alloc = std::allocator<std::pair<const Key,T> >   \
                >                                                       \
        class Container, class Key,                                     \
        class Value/*, class Compare, class Alloc*/>                    \


#define UMAP_TEMPLATE                                                   \
    template<                                                           \
        template<class Key,                                             \
                   class T,                                             \
                   class Hash = std::hash<Key>,                         \
                   class Pred = std::equal_to<Key>,                     \
                   class Alloc = std::allocator<std::pair<const Key,T> >\
                 >                                                      \
        class Container, class Key, class Value,                        \
        class Hash, class Pred, class Alloc                             \
                >                                                       \


#define ARRAY_TEMPLATE                                                  \
    template<                                                           \
        template<class T, std::size_t N>                                \
        class Array, class Type, std::size_t Size>                      \



namespace eos
{
    static const std::string default_elem_separator     = ", ";
    static const std::string default_keyval_separator   = " => ";
    static const std::string default_first_bracket      = "[";
    static const std::string default_last_bracket       = "]";


    //! Prints template Container<T> as in Python
    //! Supported containers: vector, deque, list, set, unordered_set(C++11), forward_list(C++11)
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    template<class Container>
    void print( const Container& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }


    //! Prints collections with one template argument and allocator as in Python.
    //! Supported standard collections: vector, deque, list, forward_list
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    VECTOR_AND_CO_TEMPLATE
    void print( const Container<Type>& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container<Type>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }


    //! Prints collections like std:set<T, Compare, Alloc> as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    SET_TEMPLATE
    void print( const Container<T, Compare, Alloc>& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container<T, Compare, Alloc>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }


    //! Prints collections like std:unordered_set<Key, Hash, Pred, Alloc> as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    USET_TEMPLATE
    void print( const Container<Key, Hash, Pred, Alloc>& collection
              , const std::string& elem_separator   = default_elem_separator
              , const std::string& first_bracket    = default_first_bracket
              , const std::string& last_bracket     = default_last_bracket
              , std::ostream& os = std::cout
              , bool needEndl = true
            )
    {
        typename Container<Key, Hash, Pred, Alloc>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }

    //! Prints collections like std:map<T, U> as in Python
    //! supports generic objects of std: map, multimap
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    MAP_TEMPLATE
    void print(   const Container<Key, Value>& collection
                , const std::string& elem_separator   = default_elem_separator
                , const std::string& keyval_separator = default_keyval_separator
                , const std::string& first_bracket    = default_first_bracket
                , const std::string& last_bracket     = default_last_bracket
                , std::ostream& os = std::cout
                , bool needEndl = true
        )
    {
        typename Container<Key, Value>::const_iterator it = collection.begin();
        BUILD_MAP_CONTENT
        COMPILE_CONTENT
    }

    //! Prints classes like std:unordered_map as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    UMAP_TEMPLATE
    void print(   const Container<Key, Value, Hash, Pred, Alloc>& collection
                , const std::string& elem_separator   = default_elem_separator
                , const std::string& keyval_separator = default_keyval_separator
                , const std::string& first_bracket    = default_first_bracket
                , const std::string& last_bracket     = default_last_bracket
                , std::ostream& os = std::cout
                , bool needEndl = true
        )
    {
        typename Container<Key, Value, Hash, Pred, Alloc>::const_iterator it = collection.begin();
        BUILD_MAP_CONTENT
        COMPILE_CONTENT
    }

    //! Prints collections like std:array<T, Size> as in Python
    //! \param collection which should be printed
    //! \param elem_separator the separator which will be inserted between elements of collection
    //! \param keyval_separator separator between key and value of map. For default it is the '=>'
    //! \param first_bracket data before collection's elements (usual it is the parenthesis, square or curly bracker '(', '[', '{')
    //! \param last_bracket data after collection's elements (usual it is the parenthesis, square or curly bracker ')', ']', '}')
    ARRAY_TEMPLATE
    void print(   const Array<Type, Size>& collection
                , const std::string& elem_separator   = default_elem_separator
                , const std::string& first_bracket    = default_first_bracket
                , const std::string& last_bracket     = default_last_bracket
                , std::ostream& os = std::cout
                , bool needEndl = true
            )
    {
        typename Array<Type, Size>::const_iterator it = collection.begin();
        BUILD_CONTENT
        COMPILE_CONTENT
    }

    //! Removes all whitespaces before data in string.
    //! \param str string with data
    //! \return string without whitespaces in left part
    std::string ltrim(const std::string& str);

    //! Removes all whitespaces after data in string
    //! \param str string with data
    //! \return string without whitespaces in right part
    std::string rtrim(const std::string& str);

    //! Removes all whitespaces before and after data in string
    //! \param str string with data
    //! \return string without whitespaces before and after data in string
    std::string trim(const std::string& str);



    ////////////////////////////////////////////////////////////
    ////////////////////////ostream logic//////////////////////
    /// Should be specified for concrete containers
    /// because of another types can be suitable
    /// for templates, for example templates break
    /// the code like this "cout << string("hello") << endl;"
    ////////////////////////////////////////////////////////////



#define PROCESS_VALUE_COLLECTION(os, collection)                            \
    print(  collection,                                                     \
            default_elem_separator,                                         \
            default_first_bracket,                                          \
            default_last_bracket,                                           \
            os,                                                             \
            false                                                           \
    );                                                                      \

#define PROCESS_KEY_VALUE_COLLECTION(os, collection)                        \
    print(  collection,                                                     \
            default_elem_separator,                                         \
            default_keyval_separator,                                       \
            default_first_bracket,                                          \
            default_last_bracket,                                           \
            os,                                                             \
            false                                                           \
    );                                                                      \

    ///< specialization for vector
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::vector<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for deque
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::deque<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for list
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::list<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for set
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::set<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for multiset
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::multiset<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

#ifdef MODERN_CPP_AVAILABLE
    ///< specialization for unordered_map
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::unordered_set<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for forward_list
    template<class T>
    std::ostream& operator<<(std::ostream& os, const std::forward_list<T>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for array
    template<class T, std::size_t N>
    std::ostream& operator<<(std::ostream& os, const std::array<T, N>& collection)
    {
        PROCESS_VALUE_COLLECTION(os, collection)
        return os;
    }
#endif

    ///< specialization for map, multimap
    MAP_TEMPLATE
    std::ostream& operator<<(std::ostream& os, const Container<Key, Value>& collection)
    {
        PROCESS_KEY_VALUE_COLLECTION(os, collection)
        return os;
    }

    ///< specialization for unordered_map
    UMAP_TEMPLATE
    std::ostream& operator<<(std::ostream& os, const Container<Key, Value, Hash, Pred, Alloc>& collection)
    {
        PROCESS_KEY_VALUE_COLLECTION(os, collection)
        return os;
    }
}
Skident
fuente