Inicializar datos de prueba:
CREATE EXTENSION IF NOT EXISTS pgcrypto;
CREATE TABLE docs (data JSONB NOT NULL DEFAULT '{}');
-- generate 200k documents, ~half with type: "type1" and another half with type: "type2", unique incremented index and random uuid per each row
INSERT INTO docs (data)
SELECT json_build_object('id', gen_random_uuid(), 'type', (CASE WHEN random() > 0.5 THEN 'type1' ELSE 'type2' END) ,'index', n)::JSONB
FROM generate_series(1, 200000) n;
-- inset one more row with explicit uuid to query by it later
INSERT INTO docs (data) VALUES (json_build_object('id', '30e84646-c5c5-492d-b7f7-c884d77d1e0a', 'type', 'type1' ,'index', 200001)::JSONB);
Primera consulta - filtrar por datos-> tipo y límite:
-- FAST ~19ms
EXPLAIN ANALYZE
SELECT * FROM docs
WHERE data @> '{"type": "type1"}'::JSONB
LIMIT 25;
/* "Limit (cost=0.00..697.12 rows=25 width=90) (actual time=0.029..0.070 rows=25 loops=1)"
" -> Seq Scan on docs (cost=0.00..5577.00 rows=200 width=90) (actual time=0.028..0.061 rows=25 loops=1)"
" Filter: (data @> '{"type": "type1"}'::jsonb)"
" Rows Removed by Filter: 17"
"Planning time: 0.069 ms"
"Execution time: 0.098 ms"
*/
Segunda consulta: filtrar por datos-> tipo, ordenar por datos-> índice y límite
-- SLOW ~250ms
EXPLAIN ANALYZE
SELECT * FROM docs
WHERE data @> '{"type": "type1"}'::JSONB
ORDER BY data->'index' -- added ORDER BY
LIMIT 25;
/* "Limit (cost=5583.14..5583.21 rows=25 width=90) (actual time=236.750..236.754 rows=25 loops=1)"
" -> Sort (cost=5583.14..5583.64 rows=200 width=90) (actual time=236.750..236.750 rows=25 loops=1)"
" Sort Key: ((data -> 'index'::text))"
" Sort Method: top-N heapsort Memory: 28kB"
" -> Seq Scan on docs (cost=0.00..5577.50 rows=200 width=90) (actual time=0.020..170.797 rows=100158 loops=1)"
" Filter: (data @> '{"type": "type1"}'::jsonb)"
" Rows Removed by Filter: 99842"
"Planning time: 0.075 ms"
"Execution time: 236.785 ms"
*/
Tercera consulta: igual que la segunda (anterior) pero con índice btree en datos-> índice:
CREATE INDEX docs_data_index_idx ON docs ((data->'index'));
-- FAST ~19ms
EXPLAIN ANALYZE
SELECT * FROM docs
WHERE data @> '{"type": "type1"}'::JSONB
ORDER BY data->'index' -- added BTREE index on this field
LIMIT 25;
/* "Limit (cost=0.42..2473.98 rows=25 width=90) (actual time=0.040..0.125 rows=25 loops=1)"
" -> Index Scan using docs_data_index_idx on docs (cost=0.42..19788.92 rows=200 width=90) (actual time=0.038..0.119 rows=25 loops=1)"
" Filter: (data @> '{"type": "type1"}'::jsonb)"
" Rows Removed by Filter: 17"
"Planning time: 0.127 ms"
"Execution time: 0.159 ms"
*/
Cuarta consulta: ahora filtre por datos-> id y límite = 1:
-- SLOW ~116ms
EXPLAIN ANALYZE
SELECT * FROM docs
WHERE data @> ('{"id": "30e84646-c5c5-492d-b7f7-c884d77d1e0a"}')::JSONB -- querying by "id" field now
LIMIT 1;
/* "Limit (cost=0.00..27.89 rows=1 width=90) (actual time=97.990..97.990 rows=1 loops=1)"
" -> Seq Scan on docs (cost=0.00..5577.00 rows=200 width=90) (actual time=97.989..97.989 rows=1 loops=1)"
" Filter: (data @> '{"id": "30e84646-c5c5-492d-b7f7-c884d77d1e0a"}'::jsonb)"
" Rows Removed by Filter: 189999"
"Planning time: 0.064 ms"
"Execution time: 98.012 ms"
*/
Quinta consulta: igual que la Cuarta pero con índice gin (json_path_ops) en los datos:
CREATE INDEX docs_data_idx ON docs USING GIN (data jsonb_path_ops);
-- FAST ~17ms
EXPLAIN ANALYZE
SELECT * FROM docs
WHERE data @> '{"id": "30e84646-c5c5-492d-b7f7-c884d77d1e0a"}'::JSONB -- added gin index with json_path_ops
LIMIT 1;
/* "Limit (cost=17.55..20.71 rows=1 width=90) (actual time=0.027..0.027 rows=1 loops=1)"
" -> Bitmap Heap Scan on docs (cost=17.55..649.91 rows=200 width=90) (actual time=0.026..0.026 rows=1 loops=1)"
" Recheck Cond: (data @> '{"id": "30e84646-c5c5-492d-b7f7-c884d77d1e0a"}'::jsonb)"
" Heap Blocks: exact=1"
" -> Bitmap Index Scan on docs_data_idx (cost=0.00..17.50 rows=200 width=0) (actual time=0.016..0.016 rows=1 loops=1)"
" Index Cond: (data @> '{"id": "30e84646-c5c5-492d-b7f7-c884d77d1e0a"}'::jsonb)"
"Planning time: 0.095 ms"
"Execution time: 0.055 ms"
*/
Sexta (y última) consulta: igual que la Tercera consulta (consulta por datos-> tipo, ordenar por datos-> índice, límite):
-- SLOW AGAIN! ~224ms
EXPLAIN ANALYZE
SELECT * FROM docs
WHERE data @> '{"type": "type1"}'::JSONB
ORDER BY data->'index'
LIMIT 25;
/* "Limit (cost=656.06..656.12 rows=25 width=90) (actual time=215.927..215.932 rows=25 loops=1)"
" -> Sort (cost=656.06..656.56 rows=200 width=90) (actual time=215.925..215.925 rows=25 loops=1)"
" Sort Key: ((data -> 'index'::text))"
" Sort Method: top-N heapsort Memory: 28kB"
" -> Bitmap Heap Scan on docs (cost=17.55..650.41 rows=200 width=90) (actual time=33.134..152.618 rows=100158 loops=1)"
" Recheck Cond: (data @> '{"type": "type1"}'::jsonb)"
" Heap Blocks: exact=3077"
" -> Bitmap Index Scan on docs_data_idx (cost=0.00..17.50 rows=200 width=0) (actual time=32.468..32.468 rows=100158 loops=1)"
" Index Cond: (data @> '{"type": "type1"}'::jsonb)"
"Planning time: 0.157 ms"
"Execution time: 215.992 ms"
*/
Entonces parece que la sexta (igual que la tercera) consulta es mucho más lenta cuando hay un índice de ginebra en la columna de datos. ¿Probablemente se deba a que no hay muchos valores distintos para el campo de tipo datos-> (solo "tipo1" o "tipo2")? ¿Qué puedo hacer al respecto? Necesito gin index para hacer otras consultas que lo beneficien ...
fuente
WHERE
cláusula en el índice de ginebra porque cree que devolverá menos filas, lo que no es cierto. Como puede estimar mejor el número de filas, puede ver que, ya que lo está haciendoORDER BY data->'index' LIMIT 25
, que escanear las primeras entradas del otro índice (más o menos 50, con las filas desechadas) dará como resultado incluso menos filas, por lo que contar el planificador realmente no debería intentar usar un bitmapscan resulta en un plan de consulta más rápido. Espero que eso aclare las cosas. =)[email protected]
IRC de freenode o verificar#postgresql
de dónde proviene exactamente esa cifra.