K-significa comportamiento incoherente eligiendo K con método Elbow, BIC, varianza explicada y silueta

23

Estoy tratando de agrupar algunos vectores con 90 características con K-means. Como este algoritmo me pregunta la cantidad de clústeres, quiero validar mi elección con algunas buenas matemáticas. Espero tener de 8 a 10 grupos. Las características son escala Z-score.

Método del codo y varianza explicada

from scipy.spatial.distance import cdist, pdist
from sklearn.cluster import KMeans

K = range(1,50)
KM = [KMeans(n_clusters=k).fit(dt_trans) for k in K]
centroids = [k.cluster_centers_ for k in KM]

D_k = [cdist(dt_trans, cent, 'euclidean') for cent in centroids]
cIdx = [np.argmin(D,axis=1) for D in D_k]
dist = [np.min(D,axis=1) for D in D_k]
avgWithinSS = [sum(d)/dt_trans.shape[0] for d in dist]

# Total with-in sum of square
wcss = [sum(d**2) for d in dist]
tss = sum(pdist(dt_trans)**2)/dt_trans.shape[0]
bss = tss-wcss

kIdx = 10-1

# elbow curve
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, avgWithinSS, 'b*-')
ax.plot(K[kIdx], avgWithinSS[kIdx], marker='o', markersize=12, 
markeredgewidth=2, markeredgecolor='r', markerfacecolor='None')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Average within-cluster sum of squares')
plt.title('Elbow for KMeans clustering')

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(K, bss/tss*100, 'b*-')
plt.grid(True)
plt.xlabel('Number of clusters')
plt.ylabel('Percentage of variance explained')
plt.title('Elbow for KMeans clustering')

Método del codo Diferencia

A partir de estas dos imágenes, parece que el número de grupos nunca se detiene: D. ¡Extraño! ¿Dónde está el codo? ¿Cómo puedo elegir K?

Criterio de información bayesiano

Este método proviene directamente de X-means y usa el BIC para elegir el número de clústeres. otra referencia

    from sklearn.metrics import euclidean_distances
from sklearn.cluster import KMeans

def bic(clusters, centroids):
    num_points = sum(len(cluster) for cluster in clusters)
    num_dims = clusters[0][0].shape[0]
    log_likelihood = _loglikelihood(num_points, num_dims, clusters, centroids)
    num_params = _free_params(len(clusters), num_dims)
    return log_likelihood - num_params / 2.0 * np.log(num_points)


def _free_params(num_clusters, num_dims):
    return num_clusters * (num_dims + 1)


def _loglikelihood(num_points, num_dims, clusters, centroids):
    ll = 0
    for cluster in clusters:
        fRn = len(cluster)
        t1 = fRn * np.log(fRn)
        t2 = fRn * np.log(num_points)
        variance = _cluster_variance(num_points, clusters, centroids) or np.nextafter(0, 1)
        t3 = ((fRn * num_dims) / 2.0) * np.log((2.0 * np.pi) * variance)
        t4 = (fRn - 1.0) / 2.0
        ll += t1 - t2 - t3 - t4
    return ll

def _cluster_variance(num_points, clusters, centroids):
    s = 0
    denom = float(num_points - len(centroids))
    for cluster, centroid in zip(clusters, centroids):
        distances = euclidean_distances(cluster, centroid)
        s += (distances*distances).sum()
    return s / denom

from scipy.spatial import distance
def compute_bic(kmeans,X):
    """
    Computes the BIC metric for a given clusters

    Parameters:
    -----------------------------------------
    kmeans:  List of clustering object from scikit learn

    X     :  multidimension np array of data points

    Returns:
    -----------------------------------------
    BIC value
    """
    # assign centers and labels
    centers = [kmeans.cluster_centers_]
    labels  = kmeans.labels_
    #number of clusters
    m = kmeans.n_clusters
    # size of the clusters
    n = np.bincount(labels)
    #size of data set
    N, d = X.shape

    #compute variance for all clusters beforehand
    cl_var = (1.0 / (N - m) / d) * sum([sum(distance.cdist(X[np.where(labels == i)], [centers[0][i]], 'euclidean')**2) for i in range(m)])

    const_term = 0.5 * m * np.log(N) * (d+1)

    BIC = np.sum([n[i] * np.log(n[i]) -
               n[i] * np.log(N) -
             ((n[i] * d) / 2) * np.log(2*np.pi*cl_var) -
             ((n[i] - 1) * d/ 2) for i in range(m)]) - const_term

    return(BIC)



sns.set_style("ticks")
sns.set_palette(sns.color_palette("Blues_r"))
bics = []
for n_clusters in range(2,50):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(dt_trans)

    labels = kmeans.labels_
    centroids = kmeans.cluster_centers_

    clusters = {}
    for i,d in enumerate(kmeans.labels_):
        if d not in clusters:
            clusters[d] = []
        clusters[d].append(dt_trans[i])

    bics.append(compute_bic(kmeans,dt_trans))#-bic(clusters.values(), centroids))

plt.plot(bics)
plt.ylabel("BIC score")
plt.xlabel("k")
plt.title("BIC scoring for K-means cell's behaviour")
sns.despine()
#plt.savefig('figures/K-means-BIC.pdf', format='pdf', dpi=330,bbox_inches='tight')

ingrese la descripción de la imagen aquí

El mismo problema aquí ... ¿Qué es K?

Silueta

    from sklearn.metrics import silhouette_score

s = []
for n_clusters in range(2,30):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(dt_trans)

    labels = kmeans.labels_
    centroids = kmeans.cluster_centers_

    s.append(silhouette_score(dt_trans, labels, metric='euclidean'))

plt.plot(s)
plt.ylabel("Silouette")
plt.xlabel("k")
plt.title("Silouette for K-means cell's behaviour")
sns.despine()

ingrese la descripción de la imagen aquí

Alleluja! Aquí parece tener sentido y esto es lo que espero. Pero, ¿por qué es esto diferente de los demás?

marcodena
fuente
1
Para responder a su pregunta sobre la rodilla en el caso de varianza, parece que es alrededor de 6 o 7, puede imaginarlo como el punto de ruptura entre dos segmentos lineales aproximados a la curva. La forma del gráfico no es inusual, el% de varianza se acercará asintóticamente al 100%.
Pondría
pero debería tener (más o menos) los mismos resultados en todos los métodos, ¿verdad?
marcodena
No creo saber lo suficiente como para decir. Dudo mucho que los tres métodos sean matemáticamente equivalentes con todos los datos, de lo contrario no existirían como técnicas distintas, por lo que los resultados comparativos dependen de los datos. Dos de los métodos dan un número de grupos cercanos, el tercero es mayor pero no enormemente. ¿Tiene información a priori sobre el verdadero número de clústeres?
image_doctor
No estoy 100% seguro, pero espero tener de 8 a 10 grupos
marcodena
2
Ya estás en el agujero negro de "La maldición de la dimensionalidad". Nada funciona antes de una reducción de dimensionalidad.
Kasra Manshaei

Respuestas:

7

Simplemente publique un resumen de los comentarios anteriores y algunas ideas más para que esta pregunta se elimine de las "preguntas sin respuesta".

El comentario de Image_doctor es correcto de que estos gráficos son típicos para k-means. (Sin embargo, no estoy familiarizado con la medida "Silueta"). Se espera que la varianza en el grupo disminuya continuamente al aumentar k. El codo es donde la curva se dobla más. (Tal vez piense "segunda derivada" si quiere algo matemático).

En general, es mejor elegir k usando la tarea final. No use medidas estadísticas de su clúster para tomar su decisión, sino que use el rendimiento de extremo a extremo de su sistema para guiar sus elecciones. Solo use las estadísticas como punto de partida.

Joachim Wagner
fuente
5

Encontrar el codo se puede hacer más fácil calculando los ángulos entre los segmentos consecutivos.

Reemplace su:

kIdx = 10-1

con:

seg_threshold = 0.95 #Set this to your desired target

#The angle between three points
def segments_gain(p1, v, p2):
    vp1 = np.linalg.norm(p1 - v)
    vp2 = np.linalg.norm(p2 - v)
    p1p2 = np.linalg.norm(p1 - p2)
    return np.arccos((vp1**2 + vp2**2 - p1p2**2) / (2 * vp1 * vp2)) / np.pi

#Normalize the data
criterion = np.array(avgWithinSS)
criterion = (criterion - criterion.min()) / (criterion.max() - criterion.min())

#Compute the angles
seg_gains = np.array([0, ] + [segments_gain(*
        [np.array([K[j], criterion[j]]) for j in range(i-1, i+2)]
    ) for i in range(len(K) - 2)] + [np.nan, ])

#Get the first index satisfying the threshold
kIdx = np.argmax(seg_gains > seg_threshold)

y verás algo como: ingrese la descripción de la imagen aquí

Si visualiza seg_gains, verá algo como esto: ingrese la descripción de la imagen aquí

Espero que puedas encontrar el codo complicado ahora :)

Sahloul
fuente
3

Creé una biblioteca de Python que intenta implementar el algoritmo Kneedle para detectar el punto de curvatura máxima en funciones como esta. Se puede instalar con pip install kneed.

Código y salida para cuatro formas diferentes de funciones:

from kneed.data_generator import DataGenerator
from kneed.knee_locator import KneeLocator

import numpy as np

import matplotlib.pyplot as plt

# sample x and y
x = np.arange(0,10)
y_convex_inc = np.array([1,2,3,4,5,10,15,20,40,100])
y_convex_dec = y_convex_inc[::-1]
y_concave_dec = 100 - y_convex_inc
y_concave_inc = 100 - y_convex_dec

# find the knee points
kn = KneeLocator(x, y_convex_inc, curve='convex', direction='increasing')
knee_yconvinc = kn.knee

kn = KneeLocator(x, y_convex_dec, curve='convex', direction='decreasing')
knee_yconvdec = kn.knee

kn = KneeLocator(x, y_concave_inc, curve='concave', direction='increasing')
knee_yconcinc = kn.knee

kn = KneeLocator(x, y_concave_dec, curve='concave', direction='decreasing')
knee_yconcdec = kn.knee

# plot
f, axes = plt.subplots(2, 2, figsize=(10,10));
yconvinc = axes[0][0]
yconvdec = axes[0][1]
yconcinc = axes[1][0]
yconcdec = axes[1][1]

yconvinc.plot(x, y_convex_inc)
yconvinc.vlines(x=knee_yconvinc, ymin=0, ymax=100, linestyle='--')
yconvinc.set_title("curve='convex', direction='increasing'")

yconvdec.plot(x, y_convex_dec)
yconvdec.vlines(x=knee_yconvdec, ymin=0, ymax=100, linestyle='--')
yconvdec.set_title("curve='convex', direction='decreasing'")

yconcinc.plot(x, y_concave_inc)
yconcinc.vlines(x=knee_yconcinc, ymin=0, ymax=100, linestyle='--')
yconcinc.set_title("curve='concave', direction='increasing'")

yconcdec.plot(x, y_concave_dec)
yconcdec.vlines(x=knee_yconcdec, ymin=0, ymax=100, linestyle='--')
yconcdec.set_title("curve='concave', direction='decreasing'");

ingrese la descripción de la imagen aquí

Kevin
fuente