Uso el término del título en un sentido muy laxo.
Hay una gran cantidad de trabajo sobre la teoría de los juegos evolutivos, incluidos sus fundamentos matemáticos. Me recomendaron "Juegos evolutivos y dinámica de población", pero aún no he profundizado en ello.
También hay una gran cantidad de trabajo sobre la teoría algorítmica de juegos, que es un tema popular en este sitio.
Lo que me gustaría ver es un trabajo que haga declaraciones computacionales de complejidad o convergencia sobre ciertas dinámicas evolutivas.
Ejemplos (redactados muy libremente):
- Dada una población y un esquema evolutivo, ¿podemos dar un arrepentimiento probabilístico vinculado a la optimización de la población a largo plazo (en comparación con el mejor individuo producido?). Esto parece relacionarse fuertemente con conjuntos de expertos y problemas de bandidos. ¿Qué pasa en entornos no estacionarios?
- Dado un conjunto de poblaciones de diferentes especies que interactúan en su entorno, jugando casi cualquier tipo de juego multijugador, ¿qué declaraciones podemos hacer sobre la eventual estabilidad de sus estrategias o distribuciones de estrategias, dadas sus estrategias evolutivas.
- En cualquier tipo de ambiente con muchos "nichos" (entiendo una forma muy amplia de redacción), ya sea en términos de relación directa con el medio ambiente o en términos de relaciones con otras especies, ¿qué declaraciones podemos hacer sobre cómo se distribuirán las poblaciones? a través de estos nichos.
- Cualquier problema que no haya preguntado pero que debería: voy a llegar a esto con poco AGT, TCS, Algoritmos genéticos, teoría de juegos evolutivos o antecedentes de biología de poblaciones; Estoy haciendo mis preguntas desde un punto de vista de optimización / aprendizaje automático / estadísticas, que puede ser incorrecto o incompleto.