Fronteras de círculos superpuestos

21

Dadas las coordenadas de varios puntos en un plano, y el radio de un círculo que rodea cada punto, dibuje polígonos que representen los círculos y los bordes donde los círculos se encuentran. Los bordes rectos siempre caerán a lo largo de las líneas de intersección círculo-círculo , pero podrían no seguir la longitud total de estas líneas.

Según la sugerencia de mbomb007 , imagine el comportamiento de las pompas de jabón 2D. Eso es técnicamente incorrecto, porque las burbujas de jabón siempre se encontrarían en ángulos de 120 ° para minimizar la energía, mientras que estos círculos pueden encontrarse en cualquier ángulo.

Este es un diagrama de Voronoi, menos un plano de área definida. Gracias Andreas . Esto es en realidad una generalización de un diagrama de Voronoi llamado diagrama de poder .

Ejemplos

Por ejemplo, dados dos puntos y dos radios, la salida podría verse así:

ingrese la descripción de la imagen aquí

Agregue otro punto y radio y la salida podría verse así:

ingrese la descripción de la imagen aquí

Entrada

Puede estructurar la entrada como lo desee. Por favor, publique los resultados con las siguientes entradas.

Prueba 1

  • x: 10, y: 10, r: 10
  • x: 25, y: 12, r: 8

Prueba 2

  • x: 8, y: 10, r: 6
  • x: 20, y: 8, r: 4
  • x: 18, y: 20, r: 12

Salida

La salida debe ser gráfica y debe incluir bordes de polígono, pero no se requiere nada más. Los puntos e intersecciones no necesitan ser representados como lo están en los ejemplos.

Restricciones

  • No existirá ningún punto dentro del radio de otro círculo.
  • Reglas estándar de codegolf.
  • No se aceptarán respuestas con lagunas , pero siéntase libre de divertirse con eso.
Rip Leeb
fuente
1
Debes cambiar el título para mencionar las burbujas. Estos parecen burbujas 2D.
mbomb007 01 de
3
Estás pidiendo la teselación Voronoi de un avión dado un conjunto de puntos: en.wikipedia.org/wiki/Voronoi_diagram
Andreas
3
En un diagrama de Voronoi, "para cada semilla [punto] hay una región correspondiente que consiste en todos los puntos más cercanos a esa semilla que a cualquier otra". Claramente, ese no es el caso para la Figura 2.
DavidC
2
@Andreas DavidC tiene razón, este sería un diagrama de Voronoi solo si todos los círculos fueran del mismo radio
LLlAMnYP
3
Este problema es pedir un diagrama de poder de los círculos.
Anders Kaseorg

Respuestas:

18

Python 2, 473355 bytes

L=input()
m=min
a,b,c,d=eval('m(%s-r for u,v,r in L),'*4%('u','v','-u','-v'))
e=(-c-a)/499.
H=lambda x,y:x*x+y*y
I=500
J=int(2-(d+b)/e)
print'P2',I,J,255
i=I*J
P=lambda(u,v,r):H(c+i%I*e+u,b+i/I*e-v)-r*r
while i:i-=1;p,k=m((P(k)/[1,k[2]][P(k)>0],k)for k in L);u,v,r=k;print int(255*m(1,[m([-p/r]+[(P(l)-p)/H(u-l[0],v-l[1])**.5for l in L-{k}]),p][p>0]/2/e))

Esto lee un conjunto de círculos como (x,y,r)tuplas en stdin, y genera una imagen en formato PGM para stdout. Funciona aproximadamente calculando una función de distancia del diagrama en cada píxel y sombreando cada píxel a menos de un píxel de forma proporcional a su distancia.

{(10,10,10),(25,12,8)}

salida 1

{(8,10,6),(20,8,4),(18,20,12)}

salida 2

{(6, 63, 4), (16, 88, 9), (64, 94, 11), (97, 96, 3), (23, 32, 13), (54, 14, 7), (41, 81, 3), (7, 7, 4), (77, 18, 8), (98, 55, 4), (2, 56, 7), (62, 18, 5), (13, 74, 2), (33, 56, 12), (49, 48, 4), (6, 76, 2), (82, 70, 9), (21, 71, 2), (27, 5, 10), (3, 32, 6), (70, 62, 6), (74, 46, 4), (21, 60, 7), (18, 47, 7), (94, 2, 4), (39, 97, 7), (62, 63, 2), (87, 29, 8), (19, 17, 4), (61, 23, 2), (73, 1, 8), (40, 17, 13), (99, 41, 4), (81, 57, 7), (1, 68, 5), (38, 3, 4), (46, 36, 9), (4, 39, 2), (73, 77, 3), (93, 19, 10), (67, 42, 3), (96, 65, 2), (2, 16, 3), (28, 92, 3), (54, 58, 2), (39, 86, 5), (84, 82, 5), (79, 43, 4), (5, 47, 1), (34, 41, 8), (65, 5, 2), (9, 44, 3), (53, 3, 6), (1, 12, 1), (81, 95, 7), (74, 31, 2), (63, 61, 1), (35, 72, 1), (44, 71, 2), (57, 35, 5), (46, 65, 6), (57, 45, 4), (93, 94, 1), (99, 81, 13), (13, 58, 4), (68, 32, 6), (11, 2, 6), (52, 98, 7), (51, 25, 5), (84, 2, 2), (44, 92, 3), (23, 72, 2), (32, 99, 7), (13, 19, 3), (97, 29, 8), (58, 80, 3), (67, 82, 5), (59, 60, 3), (86, 87, 5), (29, 73, 2), (5, 93, 4), (42, 74, 1), (75, 85, 8), (91, 53, 5), (23, 82, 4), (19, 97, 8), (51, 88, 3), (67, 12, 6), (60, 53, 1), (66, 72, 2), (57, 64, 2), (66, 49, 2), (44, 0, 4), (11, 69, 1), (93, 60, 5), (56, 50, 3), (19, 68, 3), (64, 75, 3), (6, 17, 2), (82, 5, 2)}

salida 3

Aquí la función de distancia se ha dividido entre 32 para que sea visible:

{(7, 9, 7), (1, 3, 2), (4, 0, 4), (9, 2, 4), (0, 8, 5)}

demostración de la función de distancia

Anders Kaseorg
fuente
1
guardar en la parte superior:exec"%s=m%s(%s for u,v,r in L);"*4%('a','in','u-r','b','ax','v-r','c','in','u+r','d','ax','v+r')
Maltysen
9

C # ~ 2746

Esta es una solución en C #. Probablemente lejos de ser óptimo, pero C # no ganará esto de todos modos. Solo quería demostrar que puedo hacerlo.

La entrada a través de la línea de comandos especificando los valores separados con un espacio en el orden xyr La salida es un archivo 'l.bmp' dentro del directorio de ejecución.

El programa acepta cualquier cantidad de círculos.

Prueba 1: 10 10 10 25 12 8

Prueba 2: 8 10 6 20 8 4 18 20 12

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;

class Program
{
    static void Main(params string[] args) => new Program().run(args);

    class Circle
    {
        public PointF P;
        public float R;
    }

    class Line
    {
        public PointF S;
        public PointF E;
        public Circle C1;
        public Circle C2;
        public Line(Circle c1, Circle c2, PointF s, PointF e)
        {
            S = s;
            E = e;
            C1 = c1;
            C2 = c2;
        }
    }


    List<Line> lines = new List<Line>();
    List<Circle> circles = new List<Circle>();

    void run(string[] args)
    {
        for (int i = 0; i < args.Length; i += 3)
            addcircle(args[i], args[i + 1], args[i + 2]);
        circles.Sort((c1, c2) => c1.P.X.CompareTo(c2.P.X));


        int mx = (int)circles.Max(c => c.P.X + c.R) + 1;
        int my = (int)circles.Max(c => c.P.Y + c.R) + 1;



        for (int i = 0; i < circles.Count; i++)
            for (int j = i + 1; j < circles.Count; j++)
            {
                var c1 = circles[i];
                var c2 = circles[j];

                var d = dist(c1.P, c2.P);
                var a = 1 / d * sqrt((-d + c1.R - c2.R) * (-d - c1.R + c2.R) * (-d + c1.R + c2.R) * (d + c1.R + c2.R));
                var x = (sqr(d) - sqr(c2.R) + sqr(c1.R)) / (2 * d);

                var ap = angle(c1.P, c2.P);
                var la = rotate(c1.P, new PointF(c1.P.X + x, c1.P.Y + a / 2), ap);
                var lb = rotate(c1.P, new PointF(c1.P.X + x, c1.P.Y - a / 2), ap);
                var l = new Line(c1, c2, la, lb);
                lines.Add(l);
            }
        foreach (Line l in lines)
            foreach (Line lo in lines)
            {
                if (l == lo) continue;
                var intersection = intersect(l, lo);

                if (intersection != null && online(intersection.Value, l) && online(intersection.Value, lo))
                {
                    foreach (Circle circle in circles)
                    {
                        if (l.C1 == circle || l.C2 == circle)
                            continue;
                        if (dist(intersection.Value, circle.P) >= circle.R)
                            continue;

                        if (dist(l.E, circle.P) < circle.R)
                            l.E = intersection.Value;

                        if (dist(l.S, circle.P) < circle.R)
                            l.S = intersection.Value;
                    }
                }
            }


        using (Bitmap bmp = new Bitmap(mx, my))
        {
            using (Graphics g = Graphics.FromImage(bmp))
            {
                g.Clear(Color.White);
                foreach (var c in circles)
                    draw(g, c);


                for (int i = 0; i < circles.Count; i++)
                {
                    var c1 = circles[i];
                    var p = new PointF(c1.P.X + c1.R, c1.P.Y);
                    for (int j = 0; j < circles.Count; j++)
                    {
                        if (i == j) continue;
                        var c2 = circles[j];
                        for (var f = 0f; f <= 360f; f += 0.1f)
                        {
                            var pl = rotate(c1.P, p, f);
                            if (dist(pl, c2.P) <= c2.R)
                            {
                                g.DrawRectangle(new Pen(Color.White), (int)pl.X, (int)pl.Y, 1, 1);
                            }

                        }
                    }
                }


                foreach (var l in lines)
                    draw(g, l);

            }
            bmp.Save("t.bmp");
        }
    }

    private float dist(PointF p1, PointF p2) => sqrt(sqr(p1.X - p2.X) + sqr(p1.Y - p2.Y));


    bool online(PointF p, Line l)
    {
        var lx = l.S.X < l.E.X ? l.S.X : l.E.X;
        var hx = l.S.X > l.E.X ? l.S.X : l.E.X;
        var ly = l.S.Y < l.E.Y ? l.S.Y : l.E.Y;
        var hy = l.S.Y > l.E.Y ? l.S.Y : l.E.Y;

        return p.X >= lx && p.X <= hx && p.Y >= ly && p.Y <= hy;
    }

    static PointF? intersect(Line l1, Line l2)
    {
        //Line1
        float A1 = l1.E.Y - l1.S.Y;
        float B1 = l1.S.X - l1.E.X;
        float C1 = A1 * l1.S.X + B1 * l1.S.Y;

        //Line2
        float A2 = l2.E.Y - l2.S.Y;
        float B2 = l2.S.X - l2.E.X;
        float C2 = A2 * l2.S.X + B2 * l2.S.Y;

        float det = A1 * B2 - A2 * B1;
        if (det == 0)
        {
            return null; //parallel lines
        }
        float x = (B2 * C1 - B1 * C2) / det;
        float y = (A1 * C2 - A2 * C1) / det;
        return new PointF(x, y);
    }

    void addcircle(string x, string y, string r)
    {
        var SCALE = 20f;
        Circle c1 = new Circle
        {
            P = new PointF(float.Parse(x) * SCALE, float.Parse(y) * SCALE),
            R = float.Parse(r) * SCALE
        };
        circles.Add(c1);
    }

    void draw(Graphics g, Line l) => g.DrawLine(new Pen(Color.Red), l.S.X, l.S.Y, l.E.X, l.E.Y);

    PointF rotate(PointF o, PointF p, float angle)
    {
        var sa = (float)Math.Sin(angle);
        var ca = (float)Math.Cos(angle);
        var dx = p.X - o.X;
        var dy = p.Y - o.Y;

        return new PointF((ca * dx - sa * dy + o.X), (sa * dx + ca * dy + o.Y));
    }

    float angle(PointF p1, PointF p2)
    {
        var dx = p2.X - p1.X;
        if (dx == 0)
            return 0f;
        return (float)Math.Atan((p2.Y - p1.Y) / dx);
    }


    void draw(Graphics g, Circle c)
    {
        g.DrawEllipse(new Pen(Color.Blue),
                      c.P.X - c.R,
                      c.P.Y - c.R,
                      c.R * 2,
                      c.R * 2);
    }

    float sqr(float d) => d * d;
    float sqrt(float d) => (float)Math.Sqrt(d);
}

Toda la matemática involucrada aquí se basa en esto . Las coordenadas de las líneas fueron fáciles de obtener utilizando los formuladores del enlace. Sin embargo, tenían que ser rotados por el ángulo entre los dos centros de crículos involucrados.

Para reducir la longitud de las líneas, calculé sus intersecciones. Luego, para esa intersección, verifiqué si el final de las líneas actuales llega a un círculo que no es el "padre de la línea" y también contiene la intersección en sí. Si ese fuera el caso, ese extremo de la línea se reduciría a la ubicación de la intersección.

Los círculos eran simples de dibujar, las partes "innecesarias" eran difíciles de quitar, así que se me ocurrió una solución "de goma", que elimina las cosas que ya no se necesitan al pintarlas de blanco nuevamente. Tipo de bruto que lo obliga. Esto se hace caminando a lo largo de cada borde de los círculos y verificando si ese píxel está dentro del alcance de otro círculo.

Inicialmente, quería rodar mi propio método de dibujo circular que solo dibuja el círculo con ángulos específicos pero que no resultó bien y tomó aún más líneas de código.

Realmente me resulta difícil explicar esto si no te has dado cuenta ... El inglés no es mi lengua materna, así que lo siento.

Golfed

using System;using System.Collections.Generic;using System.Drawing;using System.Drawing.Imaging;using System.Linq;class P{static void Main(params string[]args)=>new P().R(args);class C{public PointF P;public float R;}class L{public PointF S;public PointF E;public C C1;public C C2;public L(C c1,C c2,PointF s,PointF e){S=s;E=e;C1=c1;C2=c2;}}List<L>_=new List<L>();List<C>c=new List<C>();void R(string[]args){for(int i=0;i<args.Length;i+=3)A(args[i],args[i+1],args[i+2]);c.Sort((c1,c2)=>c1.P.X.CompareTo(c2.P.X));int B=(int)c.Max(c=>c.P.X+c.R)+1;int e=(int)c.Max(c=>c.P.Y+c.R)+1;for(int i=0;i++<c.Count;)for(int j=i+1;j++<c.Count;){var f=c[i];var q=c[j];var d=D(f.P,q.P);var a=1/d*S((-d+f.R-q.R)*(-d-f.R+q.R)*(-d+f.R+q.R)*(d+f.R+q.R));var x=(F(d)-F(q.R)+F(f.R))/(2*d);var h=angle(f.P,q.P);var k=R(f.P,new PointF(f.P.X+x,f.P.Y+a/2),h);var m=R(f.P,new PointF(f.P.X+x,f.P.Y-a/2),h);var l=new L(f,q,k,m);_.Add(l);}foreach(L l in _)foreach(L o in _){if(l==o)continue;var n=I(l,o);if(n !=null && O(n.Value,l)&& O(n.Value,o)){foreach(C p in c){if(l.C1==p || l.C2==p)continue;if(D(n.Value,p.P)>=p.R)continue;if(D(l.E,p.P)<p.R)l.E=n.Value;if(D(l.S,p.P)<p.R)l.S=n.Value;}}}Bitmap r=new Bitmap(B,e);Graphics g=Graphics.FromImage(r);g.Clear(Color.White);foreach(var _ in c)D(g,_);for(int i=0;i++<c.Count;){var Q=c[i];var P=new PointF(Q.P.X+Q.R,Q.P.Y);for(int j=0;j++<c.Count;){if(i==j)continue;var G=c[j];for(var f=0f;f<=360f;f+=0.1f){var H=R(Q.P,P,f);if(D(H,G.P)<=G.R){g.DrawRectangle(new Pen(Color.White),(int)H.X,(int)H.Y,1,1);}}}}foreach(var l in _)D(g,l);r.Save("t.bmp");}float D(PointF p1,PointF p2)=>S(F(p1.X-p2.X)+F(p1.Y-p2.Y));bool O(PointF p,L l){var lx=l.S.X<l.E.X ? l.S.X : l.E.X;var hx=l.S.X>l.E.X ? l.S.X : l.E.X;var ly=l.S.Y<l.E.Y ? l.S.Y : l.E.Y;var hy=l.S.Y>l.E.Y ? l.S.Y : l.E.Y;return p.X>=lx && p.X<=hx && p.Y>=ly && p.Y<=hy;}static PointF? I(L l1,L l2){float a=l1.E.Y-l1.S.Y;float b=l1.S.X-l1.E.X;float d=a*l1.S.X+b*l1.S.Y;float e=l2.E.Y-l2.S.Y;float f=l2.S.X-l2.E.X;float g=e*l2.S.X+f*l2.S.Y;float h=a*f-e*b;if(h==0)return null;float x=(f*d-b*g)/h;float y=(a*g-e*d)/h;return new PointF(x,y);}void A(string x,string y,string r){var F=20f;C _=new C{P=new PointF(float.Parse(x)*F,float.Parse(y)*F),R=float.Parse(r)*F };c.Add(_);}void D(Graphics g,L l)=>g.DrawLine(new Pen(Color.Red),l.S.X,l.S.Y,l.E.X,l.E.Y);PointF R(PointF o,PointF p,float angle){var a=(float)Math.Sin(angle);var n=(float)Math.Cos(angle);var b=p.X-o.X;var x=p.Y-o.Y;return new PointF((n*b-a*x+o.X),(a*b+n*x+o.Y));}float angle(PointF p1,PointF p2){var a=p2.X-p1.X;if(a==0)return 0f;return(float)Math.Atan((p2.Y-p1.Y)/a);}void D(Graphics g,C c){g.DrawEllipse(new Pen(Color.Blue),c.P.X-c.R,c.P.Y-c.R,c.R*2,c.R*2);}float F(float d)=>d*d;float S(float d)=>(float)Math.Sqrt(d);}

Resultado1 Resultado2

Ejemplos más complejos (el círculo superior se convierte en valores negativos de y)

Resultado3 Sin goma

CSharpie
fuente