Resuelve el 15 rompecabezas (el rompecabezas deslizante)

23

El 15 Puzzle es un famoso rompecabezas que consiste en deslizar 15 fichas alrededor de una cuadrícula de 4x4. A partir de una configuración aleatoria, el objetivo es organizar los mosaicos en el orden correcto. Aquí hay un ejemplo de un 15 rompecabezas resuelto:

01 02 03 04
05 06 07 08
09 10 11 12
13 14 15

Cada movimiento en el rompecabezas tiene la forma Arriba / Abajo / Izquierda / Derecha. El movimiento "Abajo" consiste en deslizar hacia abajo la ficha que se encuentra sobre el lugar vacío. El movimiento "Derecha" consiste en deslizar un mosaico hacia la derecha, en el lugar vacío. Así es como se ve el tablero después de los movimientos hacia abajo y hacia la derecha.

01 02 03 04
05 06 07 08
09 10    11
13 14 15 12

El objetivo de este desafío es escribir un programa que pueda generar la serie de movimientos necesarios para resolver el 15 Puzzle. El ganador es el programa que resuelve los cinco casos de prueba (a continuación) en la menor cantidad de movimientos totales. La solución generada no necesita ser una solución perfecta, simplemente tiene que ser mejor que la competencia. Para cada caso de prueba individual, el programa no debe tomar más de diez segundos en una máquina razonable.

Su programa debe ser capaz de resolver cualquier rompecabezas que sea solucionable, solo estoy usando estos cinco casos de prueba como puntaje.

Su programa recibirá el 15 Puzzle sin resolver como entrada en el formato de una matriz 2D. La matriz 2D puede formatearse de acuerdo con el idioma utilizado o cambiarse si el idioma no tiene matrices 2D. El primer elemento de la primera matriz secundaria será el número en la esquina superior izquierda, y el último elemento de la primera matriz secundaria será el número en la esquina superior derecha. A 0será el espacio vacío.

Como resultado, su programa debe imprimir una lista de movimientos en el orden en que deben realizarse. Cada paso debe estar numerado para aumentar la usabilidad de los resultados.

EDITAR: Basado en comentarios, permitiré que la salida sea en forma de Abajo / Arriba / etc. o en forma de coordenadas de la pieza a mover. Como este no es un código de golf, la parte más importante es resolver el rompecabezas.

Algunas otras reglas generales implican no usar una fuente externa, etc.


Caso de prueba 1

([5,1,7,3],[9,2,11,4],[13,6,15,8],[0,10,14,12])

Salida de ejemplo:

1: Down
2: Down
3: Down
4: Left
....

Caso de prueba 2

([2,5,13,12],[1,0,3,15],[9,7,14,6],[10,11,8,4])

Caso de prueba 3

([5,2,4,8],[10,0,3,14],[13,6,11,12],[1,15,9,7])

Caso de prueba 4

([11,4,12,2],[5,10,3,15],[14,1,6,7],[0,9,8,13])

Caso de prueba 5

([5,8,7,11],[1,6,12,2],[9,0,13,10],[14,3,4,15])
PhiNotPi
fuente
2
¿El solucionador debe ser capaz de resolver más que estos 5?
Matt
1
@Matt Debería poder resolver cualquier rompecabezas que sea solucionable. Pensé que eso estaba implícito, pero lo haré más explícito.
PhiNotPi
1
La forma en que lo hago sería más fácil de generar los movimientos como coordenadas únicas. como, mueve esa coordenada al único movimiento legal (el espacio). ¿Se permite la salida de esta manera?
ajax333221
@ ajax333221 Me gusta más ese estilo de salida, ya que es más fácil de generar desde la mayoría de los idiomas.
FUZxxl

Respuestas:

4

PyPy, 195 movimientos, cálculo de ~ 12 segundos

Calcula soluciones óptimas utilizando IDA * con una heurística de 'distancia caminando' aumentada con conflictos lineales. Aquí están las soluciones óptimas:

 5  1  7  3
 9  2 11  4
13  6 15  8
 0 10 14 12
Down, Down, Down, Left, Up, Up, Up, Left, Down, Down, Down, Left, Up, Up, Up

 2  5 13 12
 1  0  3 15
 9  7 14  6
10 11  8  4
Left, Down, Right, Up, Up, Left, Down, Down, Right, Up, Left, Left, Down, Right, Right, Right, Up, Up, Left, Left, Down, Left, Up, Up, Right, Down, Down, Left, Up, Up, Right, Right, Right, Down, Left, Up, Right, Down, Down, Left, Left, Down, Left, Up, Up, Right, Up, Left

 5  2  4  8
10  0  3 14
13  6 11 12
 1 15  9  7
Left, Up, Up, Right, Right, Down, Left, Up, Left, Left, Down, Down, Right, Right, Up, Left, Left, Down, Down, Right, Right, Up, Right, Up, Left, Left, Up, Right, Down, Down, Right, Down, Left, Left, Up, Up, Left, Up

11  4 12  2
 5 10  3 15
14  1  6  7
 0  9  8 13
Down, Left, Down, Right, Up, Left, Left, Left, Down, Down, Right, Right, Right, Up, Left, Left, Left, Down, Right, Right, Up, Left, Up, Up, Left, Down, Down, Right, Down, Right, Up, Up, Right, Up, Left, Left, Left, Down, Right, Right, Right, Up, Left, Down, Left, Down, Left, Up, Up

 5  8  7 11
 1  6 12  2
 9  0 13 10
14  3  4 15
Up, Right, Down, Left, Left, Down, Left, Up, Right, Up, Right, Down, Down, Right, Up, Up, Left, Left, Left, Down, Down, Down, Right, Right, Up, Right, Down, Left, Up, Left, Up, Left, Down, Right, Down, Left, Up, Right, Down, Right, Up, Up, Left, Left, Up

Y el codigo:

import random


class IDAStar:
    def __init__(self, h, neighbours):
        """ Iterative-deepening A* search.

        h(n) is the heuristic that gives the cost between node n and the goal node. It must be admissable, meaning that h(n) MUST NEVER OVERSTIMATE the true cost. Underestimating is fine.

        neighbours(n) is an iterable giving a pair (cost, node, descr) for each node neighbouring n
        IN ASCENDING ORDER OF COST. descr is not used in the computation but can be used to
        efficiently store information about the path edges (e.g. up/left/right/down for grids).
        """

        self.h = h
        self.neighbours = neighbours
        self.FOUND = object()


    def solve(self, root, is_goal, max_cost=None):
        """ Returns the shortest path between the root and a given goal, as well as the total cost.
        If the cost exceeds a given max_cost, the function returns None. If you do not give a
        maximum cost the solver will never return for unsolvable instances."""

        self.is_goal = is_goal
        self.path = [root]
        self.is_in_path = {root}
        self.path_descrs = []
        self.nodes_evaluated = 0

        bound = self.h(root)

        while True:
            t = self._search(0, bound)
            if t is self.FOUND: return self.path, self.path_descrs, bound, self.nodes_evaluated
            if t is None: return None
            bound = t

    def _search(self, g, bound):
        self.nodes_evaluated += 1

        node = self.path[-1]
        f = g + self.h(node)
        if f > bound: return f
        if self.is_goal(node): return self.FOUND

        m = None # Lower bound on cost.
        for cost, n, descr in self.neighbours(node):
            if n in self.is_in_path: continue

            self.path.append(n)
            self.is_in_path.add(n)
            self.path_descrs.append(descr)
            t = self._search(g + cost, bound)

            if t == self.FOUND: return self.FOUND
            if m is None or (t is not None and t < m): m = t

            self.path.pop()
            self.path_descrs.pop()
            self.is_in_path.remove(n)

        return m


def slide_solved_state(n):
    return tuple(i % (n*n) for i in range(1, n*n+1))

def slide_randomize(p, neighbours):
    for _ in range(len(p) ** 2):
        _, p, _ = random.choice(list(neighbours(p)))
    return p

def slide_neighbours(n):
    movelist = []
    for gap in range(n*n):
        x, y = gap % n, gap // n
        moves = []
        if x > 0: moves.append(-1)    # Move the gap left.
        if x < n-1: moves.append(+1)  # Move the gap right.
        if y > 0: moves.append(-n)    # Move the gap up.
        if y < n-1: moves.append(+n)  # Move the gap down.
        movelist.append(moves)

    def neighbours(p):
        gap = p.index(0)
        l = list(p)

        for m in movelist[gap]:
            l[gap] = l[gap + m]
            l[gap + m] = 0
            yield (1, tuple(l), (l[gap], m))
            l[gap + m] = l[gap]
            l[gap] = 0

    return neighbours

def slide_print(p):
    n = int(round(len(p) ** 0.5))
    l = len(str(n*n))
    for i in range(0, len(p), n):
        print(" ".join("{:>{}}".format(x, l) for x in p[i:i+n]))

def encode_cfg(cfg, n):
    r = 0
    b = n.bit_length()
    for i in range(len(cfg)):
        r |= cfg[i] << (b*i)
    return r


def gen_wd_table(n):
    goal = [[0] * i + [n] + [0] * (n - 1 - i) for i in range(n)]
    goal[-1][-1] = n - 1
    goal = tuple(sum(goal, []))

    table = {}
    to_visit = [(goal, 0, n-1)]
    while to_visit:
        cfg, cost, e = to_visit.pop(0)
        enccfg = encode_cfg(cfg, n)
        if enccfg in table: continue
        table[enccfg] = cost

        for d in [-1, 1]:
            if 0 <= e + d < n:
                for c in range(n):
                    if cfg[n*(e+d) + c] > 0:
                        ncfg = list(cfg)
                        ncfg[n*(e+d) + c] -= 1
                        ncfg[n*e + c] += 1
                        to_visit.append((tuple(ncfg), cost + 1, e+d))

    return table

def slide_wd(n, goal):
    wd = gen_wd_table(n)
    goals = {i : goal.index(i) for i in goal}
    b = n.bit_length()

    def h(p):
        ht = 0 # Walking distance between rows.
        vt = 0 # Walking distance between columns.
        d = 0
        for i, c in enumerate(p):
            if c == 0: continue
            g = goals[c]
            xi, yi = i % n, i // n
            xg, yg = g % n, g // n
            ht += 1 << (b*(n*yi+yg))
            vt += 1 << (b*(n*xi+xg))

            if yg == yi:
                for k in range(i + 1, i - i%n + n): # Until end of row.
                    if p[k] and goals[p[k]] // n == yi and goals[p[k]] < g:
                        d += 2

            if xg == xi:
                for k in range(i + n, n * n, n): # Until end of column.
                    if p[k] and goals[p[k]] % n == xi and goals[p[k]] < g:
                        d += 2

        d += wd[ht] + wd[vt]

        return d
    return h




if __name__ == "__main__":
    solved_state = slide_solved_state(4)
    neighbours = slide_neighbours(4)
    is_goal = lambda p: p == solved_state

    tests = [
        (5,1,7,3,9,2,11,4,13,6,15,8,0,10,14,12),
        (2,5,13,12,1,0,3,15,9,7,14,6,10,11,8,4),
        (5,2,4,8,10,0,3,14,13,6,11,12,1,15,9,7),
        (11,4,12,2,5,10,3,15,14,1,6,7,0,9,8,13),
        (5,8,7,11,1,6,12,2,9,0,13,10,14,3,4,15),
    ]

    slide_solver = IDAStar(slide_wd(4, solved_state), neighbours)

    for p in tests:
        path, moves, cost, num_eval = slide_solver.solve(p, is_goal, 80)
        slide_print(p)
        print(", ".join({-1: "Left", 1: "Right", -4: "Up", 4: "Down"}[move[1]] for move in moves))
        print(cost, num_eval)
orlp
fuente
¿Estaría bien con usted si publiqué esta solución en Rosetta Code y me aseguré de que quedara claro que vino de usted y de esta publicación? He estado trabajando en un solucionador de 15 acertijos basado en Python para esta tarea de RC: rosettacode.org/wiki/15_puzzle_solver, pero ha sido un desafío obtener mi código para resolver una ruta de longitud 52 en un período de tiempo razonable. Su solución se ejecuta en unos segundos. Estaba pensando en hacer mi propia versión IDA * pero la tuya ya funciona. Mi solucionador actual se basa en A *. Solo necesitamos un ejemplo de Python. De todos modos, avíseme si está bien usar este.
Bobby Durrett
@BobbyDurrett Eso está más que bien. Sin embargo, no es un código particularmente claro.
orlp
Gracias. Creo que seguiré trabajando en el mío para mi propia educación y también lo publicaré si lo hago funcionar lo suficientemente bien. Pensé que podría poner el suyo allí, así que hay un ejemplo de Python.
Bobby Durrett
4

JavaScript (ES6) pasos totales 329 para los 5 casos de prueba en ~ 1 minuto

Editar misma estrategia, diferentes objetivos, mejor solución. Más lento ...

Esto es más o menos cómo lo resuelvo a mano: usando objetivos intermedios. Después de cada objetivo, las fichas relativas no se mueven de nuevo. Cada objetivo intermedio se alcanza mediante una función BSF paramétrica. Los 2 parámetros son la condición de bucle L (repetir mientras es verdadero) y la condición de selección S (seleccione qué mosaico se puede mover). Los pasos:

  1. Coloque 1 arriba / izquierda
  2. Lugar 2
  3. Lugar 5
  4. Lugar 3,4 - fila superior ok
  5. Lugar 9,13 - columna izquierda ok
  6. Todo el resto

Nota al margen No verifico la posición de las fichas 14 y 15. Los acertijos sin resolver como [11,4,12,2,,15,10,3,5,,14,1,6,7,,0,9,8,13]tendrán 14 y 15 intercambiados.

F=b=>(
  s=[],
  [[_=>b[0]!=1, (o,p)=>b[o+p]]
  ,[_=>b[1]!=2, (o,p)=>(p=b[o+p])>1&&p]
  ,[_=>b[5]!=5, (o,p)=>(p=b[o+p])>2&&p]
  ,[_=>b[2]!=3|b[3]!=4, (o,p)=>(p=b[o+p])>2&&p!=5&&p]
  ,[_=>b[10]!=9|b[15]!=13, (o,p)=>(p=b[o+p])>5&&p]
  ,[_=>b[6]!=6|b[7]!=7|b[8]!=8|b[11]!=10|b[12]!=11|b[13]!=12|b[18]!=0, (o,p)=>(p=b[o+p])>5&&p!=9&&p!=13&&p]
  ].forEach(([L,S])=>{
    for(v={},v[b]=1,t=0,m=[];L();)
    {
      b.forEach((x,p)=>
        x=='0'&&[-1,5,1,-5].forEach((o,d)=>
          (x=S(o,p))&&(c=b.slice(0),c[p]=x,c[o+p]=0,v[k=''+c]?0:v[k]=m.push([c,s.concat(d)]))
        )
      );[b,s]=m[t++]
    }
  }),
  ,s.map((d,i)=>i+': '+'RULD'[d]).join('\n') // multi line output
  // ,s.map(d=>'RULD'[d]).join(' ') // single line output (easier to test)
)

Fragmento abierto para probar o jugar (solo Firefox)

Conjunto de pruebas en la consola Firefox / FireBug

T=~new Date
;[[5,1,7,3,,9,2,11,4,,13,6,15,8,,0,10,14,12]
,[2,5,13,12,,1,0,3,15,,9,7,14,6,,10,11,8,4]
,[5,2,4,8,,10,0,3,14,,13,6,11,12,,1,15,9,7]
,[11,4,12,2,,5,10,3,15,,14,1,6,7,,0,9,8,13]
,[5,8,7,11,,1,6,12,2,,9,0,13,10,,14,3,4,15]]
.forEach(t=>console.log(t+'',F(t)))
console.log('Time ms ',T-=~new Date)

Salida

"5,1,7,3,,9,2,11,4,,13,6,15,8,,0,10,14,12" "D D D L U L D L U R R U U L D D L U U"
"2,5,13,12,,1,0,3,15,,9,7,14,6,,10,11,8,4" "D R U L U L L U R D L D R D L U R U L D R D L U R U L U R R R D L L U R D R U L L D L D R U U L D R U R D L U L D D R R U L U L D R U L"
"5,2,4,8,,10,0,3,14,,13,6,11,12,,1,15,9,7" "R U U L D D R U L D D R U U L L D D R U L D L U U R R D L U R R D L L U L D D R U U L D D R U U U R R D L L U R R D L L L U R D D L U R D R U U L L D R D L U U"
"11,4,12,2,,5,10,3,15,,14,1,6,7,,0,9,8,13" "D L D R U L D D R U L L D L U R R D L U R U R D L U R U L L D R D L L D R U U L D R D L U R U U L D R R U L D R R U L L D L D R U U L D R R D L L U U R D R U L L"
"5,8,7,11,,1,6,12,2,,9,0,13,10,,14,3,4,15" "D D R U L L L D R U R D L U U R R D L U L U R D D L U U L D D D R U U L D D R U U U R D R U L D D L U U R D R U L D L L D R U L U R D L D R R U L L U R D D L U U"
"Time ms " 62234
edc65
fuente
3

Comencé a trabajar en este problema y quería contribuir con mi código hasta ahora. Como dijo Gareth, el problema es comparable al rompecabezas de 8 fichas y, por lo tanto, el código se basa en la magnífica solución de Keith Randall y, por lo tanto, en Python. Esta solución puede resolver los 5 casos de prueba con una suma total de menos de 400 movimientos, y también otros rompecabezas. Contiene una solución optimizada y una fuerza bruta. El código está un poco hinchado por ahora. La salida se abrevia como "llururd .." Espero que sea útil. http://www.penschuck.org/joomla/tmp/15Tile.txt (explicación) http://www.penschuck.org/joomla/tmp/tile15.txt (código de Python)

# Author: Heiko Penschuck
# www.penschuck.org
# (C) 2012

# import os;os.chdir('work')
# os.getcwd()

# def execfile(file, globals=globals(), locals=locals()):
#   with open(file, "r") as fh: exec(fh.read()+"\n", globals, locals)
# 
#
# execfile("tile15.py");
#
## run these
# solve_brute();
# solve();



# some boards to play with
board2=(15,14,7,3,13,10,2,9,11,12,4,6,5,0,1,8);
# best: 76(52)  
#    72(56) 
#   68(51)      uurddlurrulldrrdllluuruldrddlururulddruurdllldrurddlurdruuldrdluurdd

board3=(13, 8, 9, 4, 15, 11, 5, 3, 14, 6, 12, 7, 1, 10, 2, 0)
# best: 106(77) 
#best: 90(64)   ullldruuldrrdrlluurulldrrdldluruulddrulurrdrddlluuurdldrrulddrulldrurullldrdluurrrddllurdr

board4=(4, 8, 12, 1, 13, 7, 3, 11, 9, 15, 6, 14, 5, 2, 10, 0) ;# best  100(74)

board5=(15,2,3,4,5,6,7,8,9,10,11,12,13,1,14,0); # best 44(32)
board6=( 1, 2,  3,  4, 6, 11,  0, 12, 8, 14,  9, 13, 5, 10,  7, 15);

# testcases
board7=(5,1,7,3,9,2,11,4,13,6,15,8,0,10,14,12); #   15 (7)
board8=(2,5,13,12,1,0,3,15,9,7,14,6,10,11,8,4); #  124 (94)
board9=(5,2,4,8,10,0,3,14,13,6,11,12,1,15,9,7) ; #  72 (56)
board10=(11,4,12,2,5,10,3,15,14,1,6,7,0,9,8,13) ;# 71 (57)
board11=(5,8,7,11,1,6,12,2,9,0,13,10,14,3,4,15) ;# 99 (73)

board12=(1,2,3,4,5,6,7,8,9,10,11,12,13,0,14,15); #pretty simple board
board13=(4, 10, 5, 12, 11, 7, 15, 2, 13, 1, 14, 8, 6, 3, 9, 0)

board=board3 ; # used by solve()
bboard=list(board) ;# used by solve_brute()

# init 
clean=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0)
i=0;
solution={};
invsolution={};
E={board:0}


# derived from Keith Randall 8-tile solution
# a: a board, d: offset to move from i: index in board
def Y(a,d,i):
 b=list(a); # b is now an indexable board
 b[i],b[i+d]=b[i+d],0; # make a move (up down left right)
 b=tuple(b); # now back to searchable
 if b not in E:E[b]=a;# store new board in E

def Calc():
 ii=0;
 # memory error when x is 21
 for x in ' '*14:
  if ii>10:
   print(ii);
  ii+=1
  for a in E.copy():
   # for all boards, make possible moves (up,left,right,down) and store the new boards
   i=list(a).index(0)
   if i>3:Y(a,-4,i)
   if i%4:Y(a,-1,i)
   if i%4 <3:Y(a,1,i)
   if i<12:Y(a,4,i)

def weigh(a,goal):
    factor=[26,8,4,6, 8,8,4,4, 4,4,1,1, 3,2,1,0]
    weight=0;
    for element in a:
        i=list(a).index(element);
        ix,iy=divmod(i,4); # ist
        if element == 0:
            # special for gap
            weight=weight+ix;
            #weight+=(ix+iy)
            continue;
        i=list(a).index(element);
        ix,iy=divmod(i,4); # ist
        j=list(goal).index(element);
        sx,sy=divmod(j,4); # soll
        #k=list(a).index(0); # gap
        #kx,ky=divmod(k,4)
        # try solving from topleft to bottom right (because clean board has gap at bottomright)
        tmp= abs(sx-ix)*abs(sx-ix)*factor[j]+ abs(sy-iy)*abs(sy-iy)*factor[j]
        #tmp += ((sx!=ix )& (sy!=iy)) *(4-sx)*(4-sy)*4
        weight+=tmp
        #(10-sx-sy-sy)
        # 8*abs(sx-ix) + (16-j)*(sx!=ix)
        #print('%2d   %2d_%2d (%2d_%2d)=> %d'%(element,i,j,(sx-ix),(sy-iy),weight))
    return weight

# read numbers seperated by a whitespace
def readboard():
    global E,D,board,clean,i
    reset()
    g=[]
    for x in' '*4:g+=map(int,input().split())
    board=tuple(g)

# read 'a' till 'o'
def readasciiboard():
    global E,D,board,clean,i
    trans={"0":0,"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8,"i":9,"j":10,"k":11,"l":12,"m":13,"n":14,"o":15}
    reset()
    g=[]
    vec=tuple(input().split());
    for x in vec: g.append(trans[x])
    board=tuple(g)

def printasciiboard(a):
    trans={"0":0,"a":1,"b":2,"c":3,"d":4,"e":5,"f":6,"g":7,"h":8,"i":9,"j":10,"k":11,"l":12,"m":13,"n":14,"o":15}
    itrans={}
    for x in trans: itrans[trans[x]]=x
    g=[]
    for x in a: g.append(itrans[x])
    for i in(0,4,8,12): print('%s %s %s %s'%tuple(g[i:i+4]))

# find the board with the smallest weight
def minimum():
    global minn,E,clean
    minn=1111111;# start with a huge number
    qq=board
    for q in E:
        if weigh(q,clean) < minn: 
            minn=weigh(q,clean)
            qq=q
    return qq

# run this and printsolution()
# (you might have to reverse the order of the printed solution)
def solve():
    global start,board,E,clean,minn,solution
    start=board;
    solution={};
    E={ board:0 }
    for x in range(0,11):
        Calc(); # walks all possible moves starting from board to a depth of 10~20 moves
        if clean in E:
            print('Solution found')
            q=clean;
            tmp=[];
            while q:
                tmp.append(q)
                q=E[q]
            for x in reversed(tmp):
                solution[len(solution)]=x;
            printsolution();
            return
        q=minimum();  # calculates the "weight" for all Calc()-ed boards and returns the minimum
        #print("Len %3d"%len(E))
        print("weight %d"%minn)
#       stitch solution
        newboard=q;
        tmp=[];
        while q:
            tmp.append(q)
            q=E[q]
        for x in reversed(tmp):
            solution[len(solution)]=x;
        board=newboard;
        E={board:0}; #reset the Calc()-ed boards
    print("No Solution")


# collects and prints the moves of the solution
# from clean board to given board
# (you have to reverse the order)
def printsolution():
    global invsolution,solution,moves,clean,start
    moves=""
    g=start; # start from board to clean
    y=g
    #invsolution[clean]=0;
    for x in solution:
        # uncomment this if you want to see each board of the solution
        #print(g);
        g=solution[x];
        #sys.stdout.write(transition(y,g))
        if (transition(g,y)=="E"): continue
        moves+=transition(g,y)
        # or as squares
        #print('%10s %d %s'%("step",len(moves),transition(g,y)));
        #print(" %s -- %s "%(y,g))
        #for i in(0,4,8,12): print('%2d %2d %2d %2d'%g[i:i+4])
        y=g         
    llen=len(moves)
    print(" moves%3d "%llen)
    print(moves)
    # processing moves. funny, but occysionally ud,du,lr or rl appears due to the stitching
    while 'lr' in moves:
        a,b,c=moves.partition('lr')
        moves=a+c
        llen-=2
    while 'rl' in moves:
        a,b,c=moves.partition('rl')
        moves=a+c
        llen-=2
    while 'ud' in moves:
        a,b,c=moves.partition('ud')
        moves=a+c
        llen-=2
    while 'du' in moves:
        a,b,c=moves.partition('du')
        moves=a+c
        llen-=2
    # processing moves. concatenating lll to 3l
    while 'lll' in moves:
        a,b,c=moves.partition('lll')
        moves=a+' 3l '+c
        llen-=2
    while 'rrr' in moves:
        a,b,c=moves.partition('rrr')
        moves=a+' 3r '+c
        llen-=2
    while 'uuu' in moves:
        a,b,c=moves.partition('uuu')
        moves=a+' 3u '+c
        llen-=2
    while 'ddd' in moves:
        a,b,c=moves.partition('ddd')
        moves=a+' 3d '+c
        llen-=2

    while 'll' in moves:
        a,b,c=moves.partition('ll')
        moves=a+' 2l '+c
        llen-=1
    while 'rr' in moves:
        a,b,c=moves.partition('rr')
        moves=a+' 2r '+c
        llen-=1
    while 'uu' in moves:
        a,b,c=moves.partition('uu')
        moves=a+' 2u '+c
        llen-=1
    while 'dd' in moves:
        a,b,c=moves.partition('dd')
        moves=a+' 2d '+c
        llen-=1
    print(" processed:%3d "%llen)
    print(moves)

    return

def transition(a,b):
    # calculate the move (ie up,down,left,right)
    # between 2 boards (distance of 1 move and a weight of 1 only)
    i=list(a).index(0);
    j=list(b).index(0);
    if (j==i+1): return "l"
    if (j==i-1): return "r"
    if (j==i-4): return "d"
    if (j==i+4): return "u"
    #print("transition not possible")
    return "E"


###################################################

# below this line are functions for the brute force solution only
# added for comparision
#
# its using a global variable bboard and works destructively on it

def solve_brute():
    global bboard,board;
    bboard=list(board); # working copy
    move(1,0);move(2,1);
    move(3,14); # <== additional move, move 3 out of way
    move(4,2);move(3,6);
    gap_down();gap_down();gap_right();gap_right();gap_up();gap_up();gap_up();gap_left();gap_down();
    #first line solved
    print("first line");printbboard();
    move(5,4);move(6,5);move(7,14);move(8,6);move(7,10);
    gap_down();gap_down();gap_right();gap_right();gap_up();gap_up();gap_left();gap_down();
    #second line solved (upper half)
    print("2nd line");printbboard();
    move(9,15);move(13,8);move(9,9)
    gap_down();gap_left();gap_left();gap_up();gap_right();
    print("left border");printbboard();
    #left border solved
    move(10,15);move(14,9);move(10,10);
    gap_down();movegap(1+3*4);gap_up();gap_right();
    print("left half");printbboard();
    #left half solved

    #rotating last 4 tiles 5 times
    for x in ' '*5:
        gap_right();gap_down(); # gap is now on 15
        if (bboard==[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0]):
            print("solution found");printbboard();          
            return;
        gap_left();gap_up();
    print("No solution found");
    printbboard();
    return

def printbboard():
    global bboard
    for i in(0,4,8,12): print('%2d %2d %2d %2d'%tuple(bboard[i:i+4]))

def gap_up():
    global bboard
    i=bboard.index(0);
    if (i<4):
        print("Err up()")
        return
    bboard[i],bboard[i-4] = bboard[i-4] , 0 ;

def gap_down():
    global bboard
    i=bboard.index(0);
    if (i>11):
        print("Err down()")
        return
    bboard[i],bboard[i+4] = bboard[i+4] , 0 ;

def gap_left():
    global bboard
    i=bboard.index(0);
    if (i%4<1):
        print("Err left()")
        return  
    bboard[i],bboard[i-1]= bboard[i-1] , 0 ;

def gap_right():
    global bboard
    i=bboard.index(0);
    if (i%4>2):
        print("Err right()")
        return
    bboard[i],bboard[i+1] = bboard[i+1] , 0 ;

def movegap(d): 
    global bboard;
    # d: destination location (0-15)
    k=bboard.index(0);
    ky,kx=divmod(k,4);
    dy,dx=divmod(d,4);
    # moving the gap
    while (ky>dy): 
        gap_up();ky-=1;
    while (ky<dy):
        gap_down();ky+=1;
    while (kx>dx):
        gap_left();kx-=1;
    while (kx<dx):
        gap_right();kx+=1;

def move(s,d):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    dy,dx=divmod(d,4);
    #moving a number
    while (ix<dx):
        move1right(s);
        print("1right ");
        ix+=1;
    while (ix>dx):
        move1left(s);
        ix-=1;
        print("1left ");
    while(iy<dy):
        move1down(s);
        print("1down ");
        iy+=1;
    while(iy>dy):
        move1up(s);
        print("1up");
        iy-=1;

def move1up(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # above: move 1 above, then leftorright, then 1 down
        movegap(kx+4*(iy-1))
        movegap(ix+4*(iy-1))
        movegap(ix+4*iy)
        return; # fin
    if (ky==iy):
        # if equal, then first try 1 down
        # (not nescessary if gap is right of s)
        if (kx<ix):
            if (ky<=2):
                movegap(kx+4*(iy+1))
                movegap(ix+1+4*(iy+1)); # 1right 1down of s
                movegap(ix+1+4*(iy-1)); # 1right 1up of s
                movegap(ix+4*(iy-1));# right over s
                gap_down(); # fin
                return;
            # bottom border, must go up first
            movegap(kx+4*(iy-1));
            movegap(ix+4*(iy-1));
            gap_down();
            return; # fin
        else:
            movegap(ix+1+4*iy); # move 1 right of s
            gap_up()
            gap_left()
            gap_down();
            return; # fin
    movegap(ix+1+4*ky); # move 1 right of s
    movegap(ix+1+4*(iy+1)); # move 1 right and 1 down of s
    gap_up();
    gap_up();
    gap_left();
    gap_down();

def move1left(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # if above gap move 1 over s
        if (kx<ix):
            movegap(kx+4*iy);
            movegap(ix+4*iy);
            return;# fin
        if (kx==ix):
            #gap over s
            if (ix<3):
                # try to move under s and then left
                if (iy<3):
                    movegap(ix+1+4*ky)
                    movegap(ix+1+4*(iy+1))
                    movegap(ix-1+4*(iy+1))
                    movegap(ix-1+4*iy)
                    movegap(ix+4*iy)
                    return; #fin
            # have to move left         
            movegap(kx-1+4*ky)  
            movegap(ix-1+4*iy)
            movegap(ix+4*iy)
            return;# fin
        # move 1 right of s
        if (iy==3):
            # cant go under, have to go left over
            movegap(kx+4*(iy-1))
            movegap(ix-1+4*(iy-1))
            movegap(ix-1+4*iy)
            movegap(ix+4*iy);
            return; #fin
        movegap(ix+1+4*(iy-1))
        gap_down();gap_down();gap_left();gap_left();gap_up();gap_right();
        return; #fin
    if (ky==iy):
        if (kx<ix):
            movegap(ix-1+4*iy)
            gap_right();
            return; # fin
        if (ky<3):
            gap_down();
            ky+=1;
        else:
            #have to move up
            movegap(ix+4*(iy-1))
            movegap(ix-1+4*(iy-1))
            movegap(ix-1+4*iy)
            gap_right();
            return; #fin
    # gap below s
    movegap(ix+4*(iy+1));
    gap_left();gap_up();gap_right();


def move1right(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        if (kx==ix):
            movegap(kx+1+4*ky)
            movegap(kx+1+4*iy)
            movegap(ix+4*iy);
            return; #fin
        movegap(kx+4*iy)
        if (kx>ix):
            movegap(ix+4*iy);
            return; #fin
        movegap(kx+4*(iy+1))
        movegap(ix+1+4*(iy+1))
        movegap(ix+1+4*iy);
        movegap(ix+4*iy);
        return; #fin
    if (ky==iy):
        if (kx<ix):
            if (ky>2):
                # bottom row, left of s, have to move 1 up
                gap_up()
                # move 1 right 1 up of s
                movegap(ix+1+4*(ky-1));
                gap_down()
                gap_left()
                return; # fin
            # first 1 down
            movegap(kx+4*(ky+1))
            # to the right of s
            movegap(ix+1+4*(ky+1))
            gap_up()
            gap_left()
            return; # fin
        # already 1 right of s
        movegap(ix+4*iy);
        return; #fin
    # move gap 1 right and 1 down of s
    movegap(kx+4*(iy+1))
    movegap(ix+1+4*(iy+1))
    gap_up();
    gap_left();

def move1down(s):
    global bboard
    i=bboard.index(s);
    iy,ix=divmod(i,4);
    k=bboard.index(0);
    ky,kx=divmod(k,4);  
    if (ky<iy):
        # gap is over s, move it below
        if (kx==ix):
            if (ix>2):
                # right border, have to move 1 to the left
                movegap(kx+4*(iy-1))
                movegap(kx-1+4*(iy-1))
                movegap(kx-1+4*(iy+1))
                gap_up();
                return; #fin
            # move right of s
            movegap(kx+4*(iy-1))
            movegap(kx+1+4*(iy-1))
            movegap(kx+1+4*(iy+1))
            movegap(kx+4*(iy+1))
            gap_up(); #fin
        movegap(kx+4*(iy+1))
        movegap(ix+4*(iy+1))
        gap_up(); #fin
    if (ky==iy):
        gap_down();
        ky+=1;
    # gap is below s, move 1 under s
    movegap(ix+4*(iy+1))
    gap_up();
    #fin
Heiko Penschuck
fuente