Introducción
I Ching es un antiguo texto de adivinación y el más antiguo de los clásicos chinos. Utiliza un tipo de adivinación llamada cleromancia, que produce números aparentemente aleatorios.
La unidad básica del Zhou yi es el hexagrama (卦 guà), una figura compuesta por seis líneas horizontales apiladas (爻 yáo). Cada línea está rota o no rota. El texto recibido del Zhou yi contiene los 64 hexagramas posibles
La secuencia del Rey Wen presenta los 64 hexagramas, agrupados en 32 pares. Para 28 de los pares, el segundo hexagrama se crea volteando el primero (es decir, 180 ° de rotación). La excepción a esta regla es para hexagramas simétricos que son iguales después de la rotación. Los socios para estos se obtienen invirtiendo cada línea: el sólido se rompe y el roto se vuelve sólido.
▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 1 2 3 4 5 6 7 8 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 9 10 11 12 13 14 15 16 ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ 17 18 19 20 21 22 23 24 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 25 26 27 28 29 30 31 32 ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 33 34 35 36 37 38 39 40 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ 41 42 43 44 45 46 47 48 ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ 49 50 51 52 53 54 55 56 ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ 57 58 59 60 61 62 63 64
Solicitud
El objetivo de esto es crear una pequeña herramienta que calcule el par para un valor de hexagrama dado.
Para traducir esto a binario, uso:, también
broken line = 0, unbroken line = 1
lohexagram Number 1
ha hechobinary value 63
.La herramienta toma exactamente un argumento, un número entre 1 y 64, como solicitud de par de hexagramas y produce dos exagramas que contienen el número solicitado y su opuesto (explicación: si arg es impar, la salida debe contener hexagrama de arg y arg + 1 , pero si arg es par, la salida debe contener hexagrama de arg - 1 y arg ).
La herramienta debe girar 180 ° el hexagrama solicitado sin ser simétrico , o invertirlo cuando sea simétrico .
No se autoriza ningún mapa, excepto este, que podría almacenarse de cualquier forma que le resulte útil.
{ 1:63, 3:34, 5:58, 7:16, 9:59, 11:56, 13:47, 15: 8, 17:38, 19:48, 21:37, 23: 1, 25:39, 27:33, 29:18, 31:14, 33:15, 35: 5, 37:43, 39:10, 41:49, 43:62, 45: 6, 47:22, 49:46, 51:36, 53:11, 55:44, 57:27, 59:19, 61:51, 63:42 }
Este mapa contiene el valor binario de cada 1er exagrama de pares. Entonces, para cada par, primero debe tomarse de este mapa, pero segundo debe calcularse de acuerdo con la regla anterior.
Ouput debe contener dos hexagramas y sus números. Muestra:
iChingHexaPair 1 ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ 1 2 iChingHexaPair 14 ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ ▄▄▄▄▄▄▄ 13 14
Se aplica la escapatoria estándar
- Evite el lenguaje no libre o la publicación posterior para casos de prueba completos.
Este es un código de golf , por lo que gana la respuesta más corta en caracteres .
rotating binary by 180°
Respuestas:
Pitón 2,
6561Genera pares de hexagramas I-Ching unicode
(Guardado 4 gracias a @ Sherlock9)
Ejemplo de entrada y salida:
fuente
b=a+a%2
1st has to be taken from this map
:!Pitón 2,
252245244Ahora incluye cálculo binario (ahorrando 8 caracteres gracias a @ Sherlock9):
Ejemplo de entrada y salida:
fuente
j=a+a%2-1
aj=a-1
, ya que está usando la división de enteros, pero deberá usarj+1
yj+2
en la declaración de impresión al final. Eso todavía te ahorra 2 bytes. También usandom=ord(d[j/2]);
ym
en los dos lugares a los que llamak()
ahorrará 6 bytes. Además, es la primera0
en el"{0:06b}".format(l)
estrictamente necesario? Si no, ese es otro byte. Finalmente, si cambia a Python 3, puede deshacerse de losu
s que están delante▄▄▄▄▄▄▄
, pero print necesitará paréntesis, por lo que solo es un byte más. Te mantendré informado sobre cualquier otra cosa que piense.j=a+a%2-1
a,j=a-1
ya que debería mostrar los pares 13 y 14 cuando ingreso 14. Gracias por sus sugerenciasdef t(a):j=a+a%2-1;etc.
. Ponlo todo en una línea, esencialmente. Y puedes escribirk=lambda l:
para guardar otro byte.Puro bash 252
con 2 saltos de línea más:
Pruebas:
fuente