Triángulos integrales y medianas integrales

15

Considere un triángulo ABC donde cada lado tiene una longitud entera (un triángulo integral ). Defina una mediana de ABC como un segmento de línea desde un vértice hasta el punto medio del lado opuesto. En la figura siguiente, los segmentos de línea roja representan las medianas. Tenga en cuenta que cualquier triángulo tiene tres medianas.

triangulo_medios

Sea n un número entero positivo. ¿Cuántos triángulos integrales no degenerados con una longitud de lado menor o igual a n tienen al menos una mediana integral?

Desafío

Escriba un programa para calcular el número de triángulos integrales con al menos una mediana integral para una longitud lateral máxima dada n . El orden de las longitudes de los lados no importa, es decir, <6,6,5> representa el mismo triángulo que <5,6,6> y debe contarse solo una vez. Excluya triángulos degenerados como <1,2,3>.

Puntuación

La n más grande para la cual su programa puede generar el número de triángulos en 60 segundos en mi máquina es su puntaje. El programa con la puntuación más alta gana. Mi máquina es una Sony Vaio SVF14A16CLB, Intel Core i5, 8GB de RAM.

Ejemplos

Deje T ( N ) sea el programa con entrada de N .

T(1) = 0
T(6) = 1
T(20) = 27
T(22) = 34

Tenga en cuenta que T (1) = T (2) = T (3) = T (4) = T (5) = 0 porque ninguna combinación de lados integrales producirá una mediana integral. Sin embargo, una vez que llegamos a 6, podemos ver que una de las medianas del triángulo <5,5,6> es 4, entonces T (6) = 1.

Tenga en cuenta también que T (22) es el primer valor en el que el doble conteo se convierte en un problema: el triángulo <16,18,22> tiene las medianas 13 y 17 (y 2sqrt (85)).

Computando las medianas

Las medianas de un triángulo se pueden calcular mediante las siguientes fórmulas:

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquí

Current top score: Sp3000 - 7000 points - C
Nicolás Siplis
fuente
Los comentarios no son para discusión extendida; Esta conversación se ha movido al chat .
Pomo de la puerta

Respuestas:

7

C, fuerza bruta - n = 6080

Esto es más una línea de base que un contendiente serio, pero al menos debería comenzar las cosas.

n = 6080 es lo más alto que obtuve en un minuto de tiempo de ejecución en mi propia máquina, que es una MacBook Pro con un Intel Core i5. El resultado que obtuve para este valor es:

15041226

El código es puramente fuerza bruta. Enumera todos los triángulos dentro del límite de tamaño y prueba la condición:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

static inline int isSquare(int v) {
    int s = (int)(sqrtf((float)v) + 0.5f);
    return s * s == v;
}

static inline int isMedian(int v) {
    return v % 4 == 0 && isSquare(v / 4);
}

int main(int argc, char* argv[]) {
    int n = atoi(argv[1]);
    int nTri = 0;
    int a, b, c;

    for (c = 1; c <= n; ++c) {
        for (b = (c + 1) / 2; b <= c; ++b) {
            for (a = c - b + 1; a <= b; ++a) {
                if (isMedian(2 * (b * b + c * c) - a * a) ||
                    isMedian(2 * (a * a + c * c) - b * b) ||
                    isMedian(2 * (a * a + b * b) - c * c)) {
                    ++nTri;
                }
            }
        }
    }

    printf("%d\n", nTri);

    return 0;
}
Reto Koradi
fuente
Dependiendo del compilador, puede obtener una vuelta más rápida + mejor al usar lrintf()o en (int)roundf()lugar de agregar 0.5f y usar el truncamiento predeterminado. Sin -ffast-mathembargo, a veces es necesario utilizarlo para compilarlo en una sola cvtss2siinstrucción. gcc en línea lrintf()y sqrtfcon solo -fno-math-errno, para que obtenga asm eficiente: godbolt.org/g/E3hncQ . (Solía -march=ivybridgeporque esa es la CPU del OP). Con -ffast-math, clang convierte el sqrt en una iteración rsqrt + Newton; IDK si eso es una victoria.
Peter Cordes
Vaya, por lo general no roundf. Use (int)nearbyintf()if lrintf()no está en línea, porque usa el modo de redondeo actual en lugar de uno extraño específico. stackoverflow.com/questions/37620659/…
Peter Cordes
6

C, aproximadamente 6650 6900

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static inline int is_square(int n) {
    if ((n&2) != 0 || (n&7) == 5 || (n&11) == 8) {
        return 0;
    }

    int s = (int) (sqrtf((float) n) + 0.5f);
    return (s*s == n);
}

int main(int argc, char **argv) {
    int n = atoi(argv[1]);
    int count = 0;

    for (int a = 1; a <= n; ++a) {
        if (a&1) {
            for (int b = (a+1)/2; b <= a; ++b){
                if (b&1) {
                    for (int c = a-b+2; c <= b; c += 2) {
                        if (is_square((a*a + b*b)/2 - (c*c)/4)) {
                            ++count;
                        }
                    }
                } else {
                    for (int c = a-b+2; c <= b; c += 2) {
                        if (is_square((a*a + c*c)/2 - (b*b)/4)) {
                            ++count;
                        }
                    }
                }
            }
        } else {
            for (int b = (a+1)/2; b <= a; ++b){
                if (b&1) {
                    for (int c = a-b+2; c <= b; c += 2) {
                        if (is_square((b*b + c*c)/2 - (a*a)/4)) {
                            ++count;
                        }
                    }
                } else {
                    for (int c = a-b+2; c <= b; c += 2) {
                        if (is_square((b*b + c*c)/2 - (a*a)/4) ||
                            is_square((c*c + a*a)/2 - (b*b)/4) ||
                            is_square((a*a + b*b)/2 - (c*c)/4)) {
                            ++count;
                        }
                    }
                }
            }
        }
    }

    printf("%d\n", count);
    return 0;
}

Realmente no uso C a menudo, pero con la cantidad de aritmética, parecía una buena opción de lenguaje. El algoritmo central es la fuerza bruta como la respuesta de @ RetoKoradi , pero con algunas optimizaciones simples. Sin embargo, no estoy seguro de que nuestros valores sean comparables, porque la computadora de @ RetoKoradi parece ser más rápida que la mía.

La mayor optimización es pasar % 4completamente por alto el cheque. Un cuadrado entero n*nes 0 o 1 módulo 4, dependiendo de si nes 0 o 1 módulo 2. Por lo tanto, podemos ver todas las posibilidades para (x, y, z) % 2:

x%2  y%2  z%2    (2*(x*x+y*y) - z*z) % 4
----------------------------------------
 0    0    0              0
 0    0    1              3
 0    1    0              2
 0    1    1              1
 1    0    0              2
 1    0    1              1
 1    1    0              0
 1    1    1              3

Convenientemente, solo hay dos casos a considerar: (0, 0, 0)y (1, 1, 0)que, dados los primeros dos lados a, b, equivale a que el tercer lado ctenga paridad a^b:

 a%2   b%2         c%2 must be
 -----------------------------
  0     0               0
  0     1               1
  1     0               1
  1     1               0

a^bes la misma paridad que a-b, así que en lugar de buscar c = a-b+1y subir por 1s, esto nos permite buscar c = a-b+2y subir por 2s.

Otra optimización proviene del hecho de que, para el (1, 1, 0)caso, solo necesitamos llamar a is_square una vez ya que solo funciona una permutación. Este es un caso especial en el código desenrollando la búsqueda.

La otra optimización incluida es simplemente un fallo rápido en la is_squarefunción.

La compilación se realizó con -std=c99 -O3.

(Gracias a @RetoKoradi por señalar que 0.5in is_square debía ser 0.5fpara evitar una doble conversión).

Sp3000
fuente
1
Muy menor, pero es posible que desee utilizar en 0.5flugar de 0.5en is_square(). 0.5es una constante de tipo double, por lo que la expresión producirá un valor doble cuando agregue 0.5, incluida la conversión de tipo de floata doublepara el otro término.
Reto Koradi
@RetoKoradi Ah, gracias, esa fue una sorpresa no menor f, en realidad.
Sp3000
2

Felix, desconocido

fun is_square(v: int) => let s = int$ sqrt$ v.float + 0.5f in s*s == v;
fun is_median(v: int) => v % 4 == 0 and (v/4).is_square;

proc main() {
    n := int$ System::argv 1;
    var ntri = 0;

    for var c in 1 upto n do
        for var b in (c+1)/2 upto c do
            for var a in c - b + 1 upto b do
                if is_median(2*(b*b+c*c)-a*a) or
                   is_median(2*(a*a+c*c)-b*b) or
                   is_median(2*(a*a+b*b)-c*c) do ++ntri; done
            done
        done
    done

    ntri.println;
}

main;

Básicamente un puerto de la respuesta C, pero es más rápido que él, probado con clang -O3y icc -O3. Felix y Nim son literalmente los únicos dos lenguajes que conozco que pueden vencer a C y C ++ en los puntos de referencia. Estoy trabajando en una versión paralela, pero será un poco hasta que esté terminado, así que decidí publicar esto más adelante.

También pongo "desconocido" porque mi computadora no es necesariamente la más rápida del mundo ...

Comando utilizado para construir:

flx --usage=hyperlight -c --static -o sl0 sl0.flx

El C ++ generado es bastante interesante de ver:

//Input file: /home/ryan/golf/itri/sl0/sl0.flx
//Generated by Felix Version 15.04.03
//Timestamp: 2015/7/16 20:59:42 UTC
//Timestamp: 2015/7/16 15:59:42 (local)
#define FLX_EXTERN_sl0 FLX_EXPORT
#include "sl0.hpp"
#include <stdio.h>
#define comma ,

//-----------------------------------------
//EMIT USER BODY CODE
using namespace ::flxusr::sl0;

//-----------------------------------------
namespace flxusr { namespace sl0 {

//-----------------------------------------
//DEFINE OFFSET tables for GC
#include "sl0.rtti"
FLX_DEF_THREAD_FRAME
//Thread Frame Constructor
thread_frame_t::thread_frame_t(
) :
  gcp(0),
  shape_list_head(&thread_frame_t_ptr_map)
{}

//-----------------------------------------
//DEFINE FUNCTION CLASS METHODS
#include "sl0.ctors_cpp"
//------------------------------
//C PROC <61624>: _init_
void _init_(FLX_APAR_DECL_ONLY){
  int _i63436_v63436_s;
  int _i63435_v63435_s;
  int s;
  int a;
  int b;
  int c;
  int ntri;
  int n;
      n = static_cast<int>(::std::atoi((::std::string(1<0||1>=PTF argc?"":PTF argv[1])).c_str())); //assign simple
      ntri = 0; //assign simple
      c = 1; //assign simple
    _63421:;
      if(FLX_UNLIKELY((n < c))) goto _63428;
      b = (c + 1 ) / 2 ; //assign simple
    _63422:;
      if(FLX_UNLIKELY((c < b))) goto _63427;
      a = (c - b ) + 1 ; //assign simple
    _63423:;
      if(FLX_UNLIKELY((b < a))) goto _63426;
/*begin match*/
/*match case 1:s*/
      s  = static_cast<int>((::std::sqrt(((static_cast<float>(((2 * (b * b  + (c * c ) )  - (a * a ) ) / 4 ))) + 0.5f ))))/*int.flx: ctor*/; //init
/*begin match*/
/*match case 1:s*/
      _i63435_v63435_s  = static_cast<int>((::std::sqrt(((static_cast<float>(((2 * (a * a  + (c * c ) )  - (b * b ) ) / 4 ))) + 0.5f ))))/*int.flx: ctor*/; //init
/*begin match*/
/*match case 1:s*/
      _i63436_v63436_s  = static_cast<int>((::std::sqrt(((static_cast<float>(((2 * (a * a  + (b * b ) )  - (c * c ) ) / 4 ))) + 0.5f ))))/*int.flx: ctor*/; //init
      if(!((((2 * (b * b  + (c * c ) )  - (a * a ) ) % 4  == 0) && (s * s  == (2 * (b * b  + (c * c ) )  - (a * a ) ) / 4 )  || (((2 * (a * a  + (c * c ) )  - (b * b ) ) % 4  == 0) && (_i63435_v63435_s * _i63435_v63435_s  == (2 * (a * a  + (c * c ) )  - (b * b ) ) / 4 ) ) ) || (((2 * (a * a  + (b * b ) )  - (c * c ) ) % 4  == 0) && (_i63436_v63436_s * _i63436_v63436_s  == (2 * (a * a  + (b * b ) )  - (c * c ) ) / 4 ) ) )) goto _63425;
      {
      int* _tmp63490 = (int*)&ntri;
      ++*_tmp63490;
      }
    _63425:;
      if(FLX_UNLIKELY((a == b))) goto _63426;
      {
      int* _tmp63491 = (int*)&a;
      ++*_tmp63491;
      }
      goto _63423;
    _63426:;
      if(FLX_UNLIKELY((b == c))) goto _63427;
      {
      int* _tmp63492 = (int*)&b;
      ++*_tmp63492;
      }
      goto _63422;
    _63427:;
      if(FLX_UNLIKELY((c == n))) goto _63428;
      {
      int* _tmp63493 = (int*)&c;
      ++*_tmp63493;
      }
      goto _63421;
    _63428:;
      {
      _a12344t_63448 _tmp63494 = ::flx::rtl::strutil::str<int>(ntri) + ::std::string("\n") ;
      ::flx::rtl::ioutil::write(stdout,_tmp63494);
      }
}

//-----------------------------------------
}} // namespace flxusr::sl0
//CREATE STANDARD EXTERNAL INTERFACE
FLX_FRAME_WRAPPERS(::flxusr::sl0,sl0)
FLX_C_START_WRAPPER_PTF(::flxusr::sl0,sl0,_init_)

//-----------------------------------------
//body complete
kirbyfan64sos
fuente
2

C # (¿aproximadamente 11000?)

using System;
using System.Collections.Generic;

namespace PPCG
{
    class PPCG53100
    {
        static void Main(string[] args)
        {
            int n = int.Parse(args[0]);
            Console.WriteLine(CountOOE(n) + CountEEE(n));
        }

        static int CountOOE(int n)
        {
            // Maps from a^2 + b^2 to (b - a, a + b), which are the exclusive bounds on c.
            IDictionary<int, List<Tuple<int, int>>> pairs = new Dictionary<int, List<Tuple<int, int>>>();

            for (int a = 1; a <= n; a += 2)
            {
                int k = 2 * a * a;
                for (int b = a; b <= n; b += 2, k += 4 * (b - 1))
                {
                    List<Tuple<int, int>> prev;
                    if (!pairs.TryGetValue(k, out prev)) pairs[k] = prev = new List<Tuple<int, int>>();
                    prev.Add(Tuple.Create(b - a, a + b));
                }
            }

            int max = 2 * n * n;
            int count = 0;
            for (int x = 1; x <= n >> 1; x++)
            {
                int k = 4 * x * x;
                for (int y = x; y <= n; y++, k += 4 * y - 2)
                {
                    if (k > max) break;
                    List<Tuple<int, int>> ab;
                    if (pairs.TryGetValue(k, out ab))
                    {
                        foreach (var pair in ab)
                        {
                            // Double-counting isn't possible if a, b are odd.
                            if (pair.Item1 < x << 1 && x << 1 < pair.Item2)
                            {
                                count++;
                            }
                            if (x != y && y << 1 <= n && pair.Item1 < y << 1 && y << 1 < pair.Item2)
                            {
                                count++;
                            }
                        }
                    }
                }
            }

            return count;
        }

        static int CountEEE(int n)
        {
            // Maps from a^2 + b^2 to (b - a, a + b), which are the exclusive bounds on c.
            IDictionary<int, List<Tuple<int, int>>> pairs = new Dictionary<int, List<Tuple<int, int>>>();

            for (int a = 2; a <= n; a += 2)
            {
                int k = 2 * a * a;
                for (int b = a; b <= n; b += 2, k += 4 * (b - 1))
                {
                    List<Tuple<int, int>> prev;
                    if (!pairs.TryGetValue(k, out prev)) pairs[k] = prev = new List<Tuple<int, int>>();
                    prev.Add(Tuple.Create(b - a, a + b));
                }
            }

            // We want to consider m in the range [1, n] and c/2 in the range [1, n/2]
            // But to save dictionary lookups we can scan x in [1, n/2], y in [x, n] and consider both ways round.
            int max = 2 * n * n;
            int count = 0;
            for (int x = 1; x <= n >> 1; x++)
            {
                int k = 4 * x * x;
                for (int y = x; y <= n; y++, k += 4 * y - 2)
                {
                    if (k > max) break;
                    List<Tuple<int, int>> ab;
                    if (pairs.TryGetValue(k, out ab))
                    {
                        foreach (var pair in ab)
                        {
                            // (c1, m1) = (2x, y)
                            // (c2, m2) = (2y, x)

                            int a = (pair.Item2 - pair.Item1) / 2, b = (pair.Item2 + pair.Item1) / 2;
                            int c1 = 2 * x;

                            if (pair.Item1 < c1 && c1 < pair.Item2)
                            {
                                // To deduplicate: the possible sets of integer medians are:
                                //     m_c
                                //     m_a, m_c
                                //     m_b, m_c
                                //     m_a, m_b, m_c
                                // We only want to add if c is (wlog) the shortest edge whose median is integral (or joint integral in case of isosceles triangles).

                                if (c1 <= a) count++;
                                else if (!IsIntegerMedian(b, c1, a))
                                {
                                    if (c1 <= b || !IsIntegerMedian(a, c1, b)) count++;
                                }
                            }

                            int c2 = 2 * y;
                            if (c1 != c2 && c2 <= n && pair.Item1 < c2 && c2 < pair.Item2)
                            {
                                if (c2 <= a) count++;
                                else if (!IsIntegerMedian(b, c2, a))
                                {
                                    if (c2 <= b || !IsIntegerMedian(a, c2, b)) count++;
                                }
                            }
                        }
                    }
                }
            }

            return count;
        }

        private static bool IsIntegerMedian(int a, int b, int c)
        {
            int m2 = 2 * (a * a + b * b) - c * c;
            int s = (int)(0.5f + Math.Sqrt(m2));
            return ((s & 1) == 0) && (m2 == s * s);
        }
    }
}

n se toma como un argumento de línea de comandos.

Explicación

metro=(2un2+2si2-C2)/ /4 42un2+2si2=4 4metro2+C2C2CC=2Cun2+si2=2(metro2+C2)un2+si2unsi

un2+si2=2(metro2+C2)

unsi

Peter Taylor
fuente
No puedo construir Felix en mi máquina, pero mis tiempos n=5000son 67 segundos para la respuesta de Reto Koradi, 48 segundos para la respuesta de Sp3000 y 13 segundos para mi respuesta.
Peter Taylor
0

C, n = 3030 aquí

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

#define R     return
#define u32 unsigned
#define F        for
#define P     printf

int isq(u32 a)
{u32 y,x,t,i;
 static u32  arr720[]={0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,529,576,625,676,180,241,304,369,436,505,649,160,409,496,585,340,544,145,601,244,580,481,640,385,265};
 static char barr[724]={0};
 if(barr[0]==0)F(i=0;i<(sizeof arr720)/sizeof(unsigned);++i)
                if(arr720[i]<720) barr[arr720[i]]=1; 
 if(barr[a%720]==0) R 0;
 y=sqrt(a);
 R y*y==a;
}

int f(u32 a, u32 b, u32 c)
{u32 t,x;
 if(c&1)R 0;
 t= a*a+b*b;
 if(t&1)R 0;
 R isq((2*t-c*c)/4);
}

int h(u32 n)
{u32 cnt,a,c,k,ke,kc,d,v,l,aa,bb,cc;

 cnt=0;
 F(a=1;a<=n;++a)
   {ke=(n-a)/2;
    F(k=0;k<=ke;++k)
        {v=a+k;
         d=v*v+k*k;
         l=sqrt(d);
         v=n/2;
         if(l>v)l=v;
         v=a+k-1;
         if(l>v)l=v;
         F(c=k+1;c<=l;++c)
           {if(isq(d-c*c))
                {bb=a+2*k;cc=2*c;
                 if(bb>cc && f(a, cc,bb)) continue;
                 if( a>cc && f(cc,bb, a)) continue;
                 ++cnt;
                 //P("|a=%u b=%u c=%u", a, bb, cc);
                }
           }
        }
   }
 R cnt; 
}

int main(int c, char** a)
{time_t  ti, tf;
 double   d;
 int     ni;
 u32    n,i;

 if(c!=2||a[1]==0){P("uso: questo_programma.exe  arg1\n ove arg1 e\' un numero positivo\n");R 0;}
 ni=atoi(a[1]);
 if(ni<=0){P("Parametro negativo o zero non permesso\n");R 0;}
 n=ni;
 if(n>0xFFFFF){P("Parametro troppo grande non permesso\n"); R 0;}
 F(i=3;i<33;++i)if(i<10||i>21)P("T(%u)=%u|",i, h(i));
 ti=time(0);
 P("\nT(%u)=%u\n", n, h(n));
 tf=time(0);
 d=difftime(tf,ti);
 P("Tempo trascorso = %.2f sec\n", d); 
 R 1;
}

resultados:

C:\Users\a\b>prog 3030
T(3)=0|T(4)=0|T(5)=0|T(6)=1|T(7)=1|T(8)=2|T(9)=3|T(22)=34|T(23)=37|T(24)=42|T(25)=
45|T(26)=56|T(27)=59|T(28)=65|T(29)=67|T(30)=74|T(31)=79|T(32)=91|
T(3030)=3321226
Tempo trascorso = 60.00 sec

el código anterior sería la traducción en C de la respuesta de Axiom (si no contamos la función isq ()).

Mi compilador no vincula una función que otros usan sqrtf () ... aquí no hay una función sqrt para flotante ... ¿Están seguros de que sqrtf es una función estándar de C?

RosLuP
fuente
(desde C99)
Peter Taylor
0

NARS APL, n = 239 282 en 59 segundos

f←{(a b c)←⍵⋄1=2∣c:0⋄t←+/a b*2⋄1=2∣t:0⋄0=1∣√4÷⍨(2×t)-c*2}

∇r←g n;cnt;c;a;k;kc;ke;d;l;bb;cc
    r←⍬⋄cnt←0
    :for a :in 1..n 
       ke←⌊(n-a)÷2
       :for k :in 0..ke
          d←((a+k)*2)+k*2
          kc←⌊⌊/(n÷2),(a+k-1),√d
          →B×⍳kc<k+1  
          :for c :in (k+1)..kc
            →C×⍳∼1e¯9>1∣√d-c*2
               bb←a+2×k⋄cc←2×c
               →C×⍳(bb>cc)∧f a  cc bb
               →C×⍳( a>cc)∧f cc bb  a
               cnt+←1
               ⍝r←r,⊂a bb cc
   C:     :endfor
   B:  :endfor
    :endfor
    r←r,cnt
∇

(traduzco la respuesta Axiom one, en APL) prueba:

  g 282 
16712 
  v←5 6 10 20 30 41
  v,¨g¨v
5 0  6 1  10 4  20 27  30 74  41 166 
RosLuP
fuente
0

Axioma, n = 269 en 59 segundos

isq?(x:PI):Boolean==perfectSquare?(x)

f(a:PI,b:PI,c:PI):Boolean==
    c rem 2=1=>false
    t:=a^2+b^2
    t rem 2=1=>false
    x:=(2*t-c^2)quo 4
    isq?(x)

h(n)==
   cnt:=0  -- a:=a   b:=(a+2*k)  c:=
   r:List List INT:=[]
   for a in 1..n repeat
     ke:=(n-a)quo 2
     for k in 0..ke repeat
         d:=(a+k)^2+k^2 -- (a^2+b^2)/2=(a+k)^2+k^2   m^2+c^2=d
         l:=reduce(min,[sqrt(d*1.), n/2.,a+k-1])
         kc:=floor(l)::INT
         for c in k+1..kc repeat
             if isq?(d-c^2) then
                            bb:=a+2*k; cc:=2*c
                            if bb>cc and f(a,cc,bb) then iterate   -- 2<->3
                            if  a>cc and f(cc,bb,a) then iterate   -- 1<->3
                            cnt:=cnt+1
                            --r:=cons([a,a+2*k,2*c],r)
   r:=cons([cnt],r)
   r

Si a, b, cx son la longitud de los lados de un triángulo del lado de longitud máxima n ...

Sabríamos que m: = sqrt ((2 * (a ^ 2 + b ^ 2) -cx ^ 2) / 4)

(1) m^2=(2*(a^2+b^2)-cx^2)/4

Como Peter Taylor había dicho, 4 | (2 * (a ^ 2 + b ^ 2) -cx ^ 2) y porque 2 | 2 * (a ^ 2 + b ^ 2) que 2 | cx ^ 2 => cx = 2 * c. Entonces de 1 será

(2) m^2=(a^2+b^2)/2-c^2

a, yb tiene que tener la misma paridad, por lo que podríamos escribir b en función de a

(3) a:=a   b:=(a+2*k)

que tenemos eso

(4)(a^2+b^2)/2=(a^2+(a+2*k)^2)/2=(a+k)^2+k^2

para que el (1) pueda ser reescrito ver (2) (3) (4) como:

m^2+c^2=(a+k)^2 + k^2=d         a:=a  b:=(a+2*k)  cx:=2*c

dónde

a in 1..n  
k in 0..(n-a)/2  
c in k+1..min([sqrt(d*1.), n/2.,a+k-1])

resultados

(16) -> h 269
   (16)  [[14951]]
                                                  Type: List List Integer
        Time: 19.22 (IN) + 36.95 (EV) + 0.05 (OT) + 3.62 (GC) = 59.83 sec
RosLuP
fuente
0

¡VBA 15,000 en DIEZ segundos!

Esperaba mucho menos después de estas otras publicaciones. En un Intel 7 con 16 GB de RAM, obtengo 13-15,000 en DIEZ segundos. En un Pentium con 4 GB de RAM, obtengo 5-7,000 en DIEZ segundos. El código está abajo. Aquí está el último resultado en el Pentium

abci= 240, 234, 114, 7367, 147
abci= 240, 235, 125, 7368, 145
abci= 240, 236, 164, 7369, 164
abci= 240, 238, 182, 7370, 221
abci= 240, 239, 31, 7371, 121

Se levantó hasta un triángulo con lados 240, 239, 31 y un medio de 121. El recuento de medios es 7,371.

Sub tria()
On Error Resume Next
Dim i As Long, a As Integer, b As Integer, c As Integer, ma As Double, mb As Double, mc As Double, ni As Long, mpr As Long
Dim dtime As Date
dtime = Now
Do While Now < DateAdd("s", 10, dtime)  '100 > DateDiff("ms", dtime, Now) '
    a = a + 1
   ' Debug.Assert a < 23
    b = 1: c = 1
    Do
        ma = 0
        If a < b + c And b < a + c And c < a + b Then
            ma = ((2 * b ^ 2 + 2 * c ^ 2 - a ^ 2) / 4) ^ 0.5
            If ma <> 0 Then ni = i + 1 * -1 * (0 = ma - Fix(ma))
                If ni > i Then
                If ma <> mpr Then
                i = ni
                mpr = ma
                    Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i & ", " & ma
                    GoTo NextTri  'TO AVOID DOUBLE COUNTING
                End If
            End If
       'End If

        mb = 0
        'If b < a + c Then
            mb = ((2 * a ^ 2 + 2 * c ^ 2 - b ^ 2) / 4) ^ 0.5
            If mb <> 0 Then ni = i + 1 * -1 * (0 = mb - Fix(mb))
            If ni > i Then
            If mb <> mpr Then
                i = ni
                mpr = mb
                Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i & ", " & mb
                GoTo NextTri  'TO AVOID DOUBLE COUNTING
            End If
            End If
        'End If

        mc = 0
        'IfThen
            mc = ((2 * b ^ 2 + 2 * a ^ 2 - c ^ 2) / 4) ^ 0.5
            If mc <> 0 Then ni = i + 1 * -1 * (0 = mc - Fix(mc))
            If ni > i Then
            If mc <> mpr Then
            i = ni
            mpr = mc
                Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i & ", " & mc
            End If
            End If
        End If
NextTri:
        Do While c <= b
            'c = c + 1
            ma = 0
            If a < b + c And b < a + c And c < a + b Then

                    ma = ((2 * b ^ 2 + 2 * c ^ 2 - a ^ 2) / 4) ^ 0.5
                    If ma <> 0 Then ni = i + 1 * -1 * (0 = ma - Fix(ma))
                            If ni > i Then
                    If ma <> mpr Then
                        mpr = ma
                i = ni
                    End If
                    Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i & ", " & ma
                    GoTo NextTri2  'TO AVOID DOUBLE COUNTING
                End If
            'End If

            mb = 0
            'If b < a + c Then
                mb = ((2 * a ^ 2 + 2 * c ^ 2 - b ^ 2) / 4) ^ 0.5
                If mb <> 0 Then ni = i + 1 * -1 * (0 = mb - Fix(mb))
                        If ni > i Then
                If mb <> mpr Then
                mpr = mb
                i = ni
                    Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i & ", " & mb
                    GoTo NextTri2  'TO AVOID DOUBLE COUNTING
                End If
                End If
            'End If

            mc = 0
            'If c < b + a Then
                    mc = ((2 * b ^ 2 + 2 * a ^ 2 - c ^ 2) / 4) ^ 0.5
                    If mc <> 0 Then ni = i + 1 * -1 * (0 = mc - Fix(mc))
                            If ni > i Then
                    If mc <> mpr Then
                    mpr = mc
                i = ni
                    Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i & ", " & mc
                    End If
                End If
            End If
       ' Debug.Print "abci= " & a & ", " & b & ", " & c & ", " & i
            c = c + 1
        Loop 'While c <= a
NextTri2:
        b = b + 1
        c = 1
    Loop While b <= a
Loop
Debug.Print i

End Sub
George Let
fuente
1
Bienvenido a PPCG!
Martin Ender