Exprese un número: un moderno "Des Chiffres et des Lettres"

16

Expresa un número

En los años 60, los franceses inventaron el programa de televisión "Des Chiffres et des Lettres" (Dígitos y letras). El objetivo de la parte Dígitos del espectáculo era acercarse lo más posible a un determinado número objetivo de 3 dígitos, utilizando algunos números seleccionados al azar. Los concursantes podrían usar los siguientes operadores:

  • concatenación (1 y 2 es 12)
  • suma (1 + 2 es 3)
  • resta (5 - 3 = 2)
  • división (8/2 = 4); la división solo está permitida si el resultado es un número natural
  • multiplicación (2 * 3 = 6)
  • paréntesis, para anular la precedencia regular de las operaciones: 2 * (3 + 4) = 14

Cada número dado solo se puede usar una vez o en absoluto.

Por ejemplo, el número objetivo 728 puede coincidir exactamente con los números: 6, 10, 25, 75, 5 y 50 con la siguiente expresión:

75 * 10 - ( ( 6 + 5 ) * ( 50 / 25 ) ) = 750 - ( 11 * 2 ) = 750 - 22 = 728

Todavía del original Frensh "Des Chiffres et des Lettres"

En este desafío de código, se le da la tarea de encontrar una expresión lo más cerca posible de un determinado número objetivo. Como vivimos en el siglo XXI, introduciremos números objetivo más grandes y más números para trabajar que en los años 60.

Reglas

  • Operadores permitidos: concatenación, +, -, /, *, (y)
  • El operador de concatenación no tiene símbolo. Solo concatena los números.
  • No hay "concatenación inversa". 69 es 69 y no se puede dividir en un 6 y un 9.
  • El número objetivo es un entero positivo y tiene un máximo de 18 dígitos.
  • Hay al menos dos números para trabajar y un máximo de 99 números. Estos números también son enteros positivos con un máximo de 18 dígitos.
  • Es posible (en realidad, muy probablemente) que el número objetivo no se pueda expresar en términos de números y operadores. El objetivo es acercarse lo más posible.
  • El programa debe finalizar en un tiempo razonable (unos minutos en una PC de escritorio moderna).
  • Se aplican lagunas estándar.
  • Es posible que su programa no esté optimizado para el conjunto de pruebas en la sección "puntaje" de este rompecabezas. Me reservo el derecho de cambiar el conjunto de prueba si sospecho que alguien está violando esta regla.
  • Esto no es un codegolf.

Entrada

La entrada consiste en una matriz de números que pueden formatearse de cualquier manera conveniente. El primer número es el número objetivo. El resto de los números son los números con los que debe trabajar para formar el número objetivo.

Salida

Los requisitos para la salida son:

  • Debe ser una cadena que consta de:
    • cualquier subconjunto de los números de entrada (excepto el número objetivo)
    • cualquier número de operadores
  • Prefiero que la salida sea una sola línea sin espacios, pero si debe hacerlo, puede agregar espacios y nuevas líneas como mejor le parezca. Serán ignorados en el programa de control.
  • La salida debe ser una expresión matemática válida.

Ejemplos

Para facilitar la lectura, todos estos ejemplos tienen una solución exacta y cada número de entrada se usa exactamente una vez.

Entrada: 1515483, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Salida:111*111*(111+11+1)

Entrada: 153135, 1, 2, 3, 4, 5, 6, 7, 8, 9
Salida:123*(456+789)

Entrada: 8888888888, 9, 9, 9, 99, 99, 99, 999, 999, 999, 9999, 9999, 9999, 99999, 99999, 99999, 1
Salida:9*99*999*9999-9999999-999999-99999-99999-99999-9999-999-9-1

Entrada: 207901, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
Salida:1+2*(3+4)*(5+6)*(7+8)*90

Entrada: 34943, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 Salida: 1+2*(3+4*(5+6*(7+8*90))) Pero también la salida válida es:34957-6-8

Puntuación

La puntuación de penalización de un programa es la suma de los errores relativos de las expresiones para el conjunto de pruebas a continuación.

Ecuación de puntuación

Por ejemplo, si el valor objetivo es 125 y su expresión da 120, su puntaje de penalización es abs (1 - 120/125) = 0,04.

El programa con la puntuación más baja (error relativo total más bajo) gana. Si dos programas terminan por igual, la primera presentación gana.

Finalmente, el conjunto de pruebas (8 casos):

14142, 10, 11, 12, 13, 14, 15
48077691, 6, 9, 66, 69, 666, 669, 696, 699, 966, 969, 996, 999
333723173, 3, 3, 3, 33, 333, 3333, 33333, 333333, 3333333, 33333333, 333333333
589637567, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
8067171096, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199
78649377055, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992
792787123866, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169
2423473942768, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 2000000, 5000000, 10000000, 20000000, 50000000

Rompecabezas similares anteriores

Después de crear este rompecabezas y publicarlo en el sandbox, noté algo similar (¡pero no lo mismo!) En dos rompecabezas anteriores: aquí (sin soluciones) y aquí . Este acertijo es algo diferente, porque introduce el operador de concatenación, no busco ni encuentro exactamente y me gusta ver estrategias para acercarme a la solución sin fuerza bruta. Creo que es un reto.

en cualquier lugar
fuente
66
¿Puedes concatenar los resultados de otros operadores? Por ejemplo, 21 = (1 + 1) 1.
Andrew dice Reinstate Monica
1
Guau. Buena pregunta. No pensé en eso. Mi primera respuesta fue "de ninguna manera; no es así como lo pretendí". Pero es muy razonable. Y la concatenación no sería un gran operador si esto no fuera posible. ¡Entonces sí! Es posible. Ponga paréntesis alrededor de una expresión, ponga otra expresión o número al lado y ahí está la concatenación. Entonces (1 + 1) (1 + 1) es 22. Ajustaré la pregunta en consecuencia.
2015
1
Solía ​​mirar ese programa cuando era niño y estoy bastante seguro de que no había un operador de concatenación . Bueno, tal vez las reglas han cambiado desde que fue en los 90 ...
Michael M.
Probablemente tengas razón. No estaba seguro de eso. Pero hace que el rompecabezas más interesante ...
agtoever
1
Confirmo que la concatenación no existe o es una adición reciente, pero me encanta, ¡hace que el desafío sea mucho más interesante!
Docteur

Respuestas:

5

C ++ 17, puntaje .0086

Este programa tiene un puntaje de penalización no determinista debido a las carreras de subprocesos, por lo que estoy declarando en base a un promedio de tres carreras, cada una de las cuales manejó el conjunto de pruebas en menos de un minuto:

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.000975 for 5(1((((555555255-1-1-4-5-5-5-5-4-4-4-4-4-4-4-4-4-4-4-4-4-5-3-3-3-3-3-3-3-3-3-3-3-3-3-5)/2*3/2-2)/2*3+2+1+1+1+1-1-1)/2*2/2/2/2)/2) = 589062470
score 0.000462 for (((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-109-107-103-101-97-89-83-79-73-71-67-61-59-53-47-43-17-3)/5*7+23)/2/11*13+19)/31*37 = 8063447296
score 0.000118 for (992930870*72+812+756+702+650+600+552+506+462+420+380+342-42-56-182-12-210-156-90-20-272-30-6-306)/240*132*2 = 78640130184
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-2178309-1346269-3524578-514229-196418-121393-17711-233-75025-46368-89-28657-4181-10946-6765-34-987-2584-13-610-8-1)/2-377-144)/5-1597)1 = 793193194211
score 0.005725 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-500-1000)/50)/5)+200+100+10 = 2409600268972
total score = .007951

real    0m57.876s
user    4m24.396s
sys     0m0.684s

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.001675 for (3((((((((555555455+5+5+5+5-1-1-4-4-4-4-4-4-4-4-4-1-4-4-4-4-5-3-3-3-3-3-4)/2*3/2-1)*2+5)/3*3+3)/2-3-3)/2*3/2*2+2)/2*2/2*3+2+1)/5/2)-1-1-1-1-1-1-1-1-1-2)/2*3 = 590624943
score 0.000973 for ((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-107-101-59-97-79-3-71-67-83-2-47-37-73-89-103-19-11-29)/5*7+109-23)/61*43 = 8059325224
score 0.000118 for ((992930870*72+812+756+702+650+600+552+506+462+420+380+342+306+272+240+210+182-0-56-110-20-90)/2-42-156)/30*132/12*6 = 78640132296
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-3524578-514229-196418-2178309-1346269-121393-75025-28657-10946-233-46368-89-17711-2584-6765-610-4181-34-987-55-1)/2-8-144-377)/5-1597)1 = 793193194161
score 0.004734 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-100-1000-500)/200*50/10)/5) = 2412000335827
total score = .008171

real    0m45.636s
user    3m30.272s
sys     0m0.720s

score 0.000071 for 14(11*13) = 14143
score 0.000019 for (696699+66)*69 = 48076785
score 0.000069 for 333333+333333333+33333 = 333699999
score 0.002963 for 1(((((((555555555+5+5+5+5+5+5+4+4+4+4-1-2-4-4-4-4-4-4-4-4-4-4-4-3-3-3-3)/2*3+3+2)/2*2+3+3)/2*2/2/2*3+3)/2-3-3)*3/2-1-3)/2*3/2/2)/2 = 587890622
score 0.000069 for ((((199181197*41-193-191-179-173-167-163-157-151-149-139-137-131-127-113-109-107-103-101-97-89-83-79-73-71-67-61-59-53-47-43-37-11)/7)2+3)/23*17-13-5)/31*29 = 8066615553
score 0.000118 for ((992930870*72+812+756+702+650+600+552+506+462+420+380-0-6-90-56-42-272-182-110-210-342-30-306)*2+12)/240*132 = 78640129524
score 0.000512 for (((317811*832040*3-39088169-24157817-14930352-9227465-5702887-2178309-1346269-3524578-514229-196418-121393-75025-46368-28657-144-55-17711-2584-10946-4181-6765-21-610-987-377-8-1)/2-89-13)/5-233-1597)1 = 793193192491
score 0.005725 for 2(20((120000000*20000+50000000+10000000+5000000+2000000+100000+50000+10000+5000+2000-500-1000)/50)/5)+200+100+10 = 2409600268972
total score = .009546

real    0m57.289s
user    4m19.488s
sys     0m0.708s

Aquí está el programa; La explicación se proporciona en los comentarios. Puede definir CONCAT_NONEreglas tradicionales de cuenta regresiva que no permitan la concatenación, o CONCAT_DIGITSpermitir la concatenación de los valores de entrada, pero no de ningún resultado intermedio. Por defecto, sin ninguna definida, se utilizan las reglas más liberales.

#include <omp.h>

#include <algorithm>
#include <cmath>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

// We apply some principles to help us arrive at a good enough solution
// in a reasonable time:

// 1. Ruthlessly prune duplicate expressions from the candidate
//    list.  If we've seen a+b, then there's no need to consider
//    b+a.  Similarly, having seen (a+b)+c, then (a+c)+b can be
//    discounted.
// 2. Detect duplicates by storing batches of part-processed results
//    in sets before sending to the next pass.
// 3. Sort our candidates so that those containing a term near to the
//    target are first in line for further processing.
// 4. Gradually widen our acceptance margin as we proceed.  This
//    allows us to terminate quickly without exhaustively searching
//    the full problem space.
// 5. Parallelize the generation of candidate solutions using OpenMP.

// Define precedence values for our operators, so that we can print
// with the minimum sufficient parentheses.  The values are grouped
// into tens so that add/10 == subtract/10 and mult/10 == divide/10 -
// the operators use that for avoiding duplicate expressions.
static const int PREC_ADD = 26;
static const int PREC_SUBTRACT = 24;
static const int PREC_MULT = 16;
static const int PREC_DIVIDE = 14;
static const int PREC_CONCAT = 2;
static const int PREC_LITERAL = 0;

static const int PREC_MAX = 1000;

class LiteralTerm;

struct Term
{
    long value;
    int precedence;

    Term(long value, int precedence)
        : value(value), precedence(precedence)
    {}
    Term(const Term&) = default;
    virtual ~Term() = default;

    virtual std::string to_string(int p = PREC_MAX) const = 0;
    virtual LiteralTerm as_literal() const = 0;

    long distance(long target) const { return std::abs(value - target); }

    // We sort large values first, in the hope that this will approach
    // the target faster.
    bool operator<(const Term& o) const { return value > o.value; }
};


// We have two kinds of Term: a LiteralTerm is a leaf node of the
// expression tree, and a BinaryTerm is an internal node.
struct Operator;

class LiteralTerm : public Term
{
    std::string s;
public:
    LiteralTerm(std::string s) : Term(std::stol(s), 0), s(s) {}
    LiteralTerm(std::string s, long value) : Term(value, 0), s(s) {}
    std::string to_string(int = PREC_MAX) const override { return s; }
    LiteralTerm as_literal() const override { return *this; }
};

struct BinaryTerm : public Term
{
    Operator const *op;

    std::shared_ptr<const Term> a;
    std::shared_ptr<const Term> b;

    BinaryTerm(long value, const Operator* op, std::shared_ptr<const Term> a, std::shared_ptr<const Term> b);
    BinaryTerm(const BinaryTerm&) = default;
    BinaryTerm& operator=(const BinaryTerm&) = default;

    std::string to_string(int p = PREC_MAX) const;

    LiteralTerm as_literal() const override { return { to_string(), value }; }
};

struct TermList {
    std::vector<std::shared_ptr<const Term>> terms;
    std::vector<long> values;
    long target_value;
    long badness;

    TermList(std::vector<std::shared_ptr<const Term>> terms, long target_value)
        : terms(std::move(terms)),
          values(),
          target_value(target_value),
          badness(min_badness(this->terms, target_value))
    {
        values.reserve(terms.size());
        std::transform(terms.begin(), terms.end(),
                       std::back_inserter(values), [](auto t) { return t->value; });
        // Literals that begin with "0" need to be distinct from (but
        // adjacent to) equivalent non-literals.  Append a negative
        // value for each term with leading zeros.  There's an edge
        // case involving multiple leading zeros, but we'll ignore
        // that.
        for (const auto& v: terms)
            if (v->precedence <= PREC_CONCAT && v->value > 0 && v->to_string()[0] == '0')
                values.push_back(-v->value);
    }

    // Sort according to the term that's nearest to the target.
    bool operator<(const TermList& o) const
    {
        return std::make_tuple(std::cref(badness),   std::cref(values))
            <  std::make_tuple(std::cref(o.badness), std::cref(o.values));
    }

private:
    static long min_badness(const std::vector<std::shared_ptr<const Term>>& t, long target_value)
    {
        auto less_bad = [target_value](const auto& a, const auto&b)
            { return a->distance(target_value) < b->distance(target_value); };
        auto const& e = *std::min_element(t.begin(), t.end(), less_bad);
        return std::abs(e->value - target_value);
    }
};

using Set = std::set<TermList>;

// Detect duplicate expressions.  This will discount "3+2-3", "8*5*2/3/5"
// and similar expressions that contain simple pairs of inverse operands.
static bool contains_value(const Term& t, int precedence, long value)
{
    auto *const b = dynamic_cast<const BinaryTerm*>(&t);
    if (t.precedence == precedence)
        return t.value == value
            || b && b->b->value < value
            || b && contains_value(*b->a, precedence, value)
            || b && contains_value(*b->b, precedence, value);
    if (t.precedence/10 == precedence/10)
        // Advance through the subtractions to inspect the additions
        // (or through the divides to inspect the multiplications).
        return b && contains_value(*b->a, precedence, value);
    return false;
}

// An Operator is a factory producing binary terms of a given type,
// and for printing those terms.  Here's the abstract base class.
struct Operator
{
    using TermPointer = std::shared_ptr<const Term>;
    using BinaryTermPointer = std::shared_ptr<const BinaryTerm>;

    int const precedence;
    std::string const joiner;

    virtual std::string to_string(const Term &a, const Term &b) const {
        return a.to_string(precedence) + joiner + b.to_string(precedence);
    }

    virtual BinaryTermPointer make_term(TermPointer a, TermPointer b) const {
        long r = evaluate(*a, *b);
        return r ? std::make_shared<BinaryTerm>(r, this, a, b) : BinaryTermPointer();
    }

    virtual ~Operator() = default;

protected:
    Operator(int precedence, std::string joiner) : precedence(precedence), joiner(joiner) {}

    virtual long evaluate(const Term& a, const Term& b) const = 0;
};

// Now we define a subclass for each permitted operator
struct AddOperator : Operator
{
    AddOperator() : Operator(PREC_ADD, "+") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        const auto *d = dynamic_cast<const BinaryTerm*>(&a);
        long r;
        return b.precedence/10 != PREC_ADD/10
            && a.precedence != PREC_SUBTRACT
            && b.value > 0
            && ! (d && d->precedence == this->precedence && d->b->value < b.value)
            && !__builtin_add_overflow(a.value, b.value, &r)
            ? r : 0;
    }
};
struct SubtractOperator : Operator
{
    SubtractOperator() : Operator(PREC_SUBTRACT, "-") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        return b.precedence < PREC_SUBTRACT
            && a.value > b.value
            && !contains_value(a, PREC_ADD, b.value)
            ? a.value - b.value : 0;
    }
};
struct MultiplyOperator : Operator
{
    MultiplyOperator() : Operator(PREC_MULT, "*") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        const auto *d = dynamic_cast<const BinaryTerm*>(&a);
        long r;
        return b.precedence/10 != PREC_MULT/10
            && b.value > 1
            && (b.value > 2 || a.value > 2)
            && ! (d && d->precedence == this->precedence && d->b->value < b.value)
            && !__builtin_mul_overflow(a.value, b.value, &r)
            ? r : 0;
    }
};
struct DivideOperator : Operator
{
    DivideOperator() : Operator(PREC_DIVIDE, "/") {}

    long evaluate(const Term& a, const Term& b) const override
    {
        return b.precedence/10 != PREC_DIVIDE/10 && b.value > 1
            && a.value % b.value == 0
            && !contains_value(a, PREC_MULT, b.value)
            ? a.value / b.value : 0;
    }
};

struct ConcatOperator : Operator
{
    ConcatOperator() : Operator(PREC_CONCAT, "") {}

    long evaluate(const Term& a, const Term& b) const override
    {
#ifdef CONCAT_DIGITS
        if (a.precedence > PREC_CONCAT || a.value == 0 || b.precedence >= PREC_CONCAT)
            return 0;
#else  // CONCAT_FULL
        if (b.precedence == PREC_CONCAT || a.value == 0)
            return 0;
#endif
        long bv = b.value, av = a.value, x = 1, r;
        if (b.precedence > PREC_CONCAT) while (x <= bv) x*= 10;
        else { int d = b.to_string().length(); while (d--) x*= 10; }
        return __builtin_mul_overflow(av, x, &r) || __builtin_add_overflow(r, bv, &r) ? 0 : r;
    }
};
struct ReverseConcatOperator : ConcatOperator
{
    BinaryTermPointer make_term(TermPointer a, TermPointer b) const override
    {
        return ConcatOperator::make_term(b, a);
    }
};

static const std::vector<std::shared_ptr<const Operator>> ops{
#ifndef CONCAT_NONE
        std::make_shared<ConcatOperator>(),
        std::make_shared<ReverseConcatOperator>(),
#endif
        std::make_shared<MultiplyOperator>(),
        std::make_shared<AddOperator>(),
        std::make_shared<SubtractOperator>(),
        std::make_shared<DivideOperator>(),
};


// Implement the BinaryTerm members that use Operator
BinaryTerm::BinaryTerm(long value, const Operator* op, std::shared_ptr<const Term> a, std::shared_ptr<const Term> b)
    : Term(value, op->precedence), op(op), a(std::move(a)), b(std::move(b))
{}

std::string BinaryTerm::to_string(int p) const
{
    auto const s = op->to_string(*a, *b);
    return (p/10) < (precedence/10) ? "("+s+")" : s;
}


// An object to represent our target value, and how close we have
// reached so far.
struct Target
{
    const long value;
    double max_badness = 0;

    LiteralTerm best = {"0"};
    long best_badness = value;

    bool done() const { return best_badness < max_badness; }
    double score() const { return 1.*best_badness/value; }

    void update(const Term& t)
    {
        auto badness = std::abs(t.value - value);
        if (badness < best_badness) {
            best = t.as_literal();
            best_badness = badness;
        }
    }

    void update(const TermList& terms)
    {
        for (auto t: terms.terms)
            update(*t);
    }

    void increase_threshold(size_t items_seen)
    {
        // Adjust our acceptance threshold nearer to accepting 0 by
        // 0.01% for every million values seen.
        max_badness += (value - max_badness) * .0001 * std::exp(items_seen / 1000000);
    }
};

// OpenMP reduction for sets
auto merge(auto& a, auto& b)
{
    auto it = a.begin();
    for (auto&& e: b)
        it = a.insert(std::move(e)).first;
    return a;
}
#pragma omp declare reduction(merge: Set: merge<Set>(omp_out, omp_in) ) \
    initializer(omp_priv = Set())


// We run a cascade of pair-wise combination steps, where for each
// input TermList, we generate every possible allowed pairing of its
// terms, and pass that through (in batches) to the next stage.
struct Combiner
{
    std::unique_ptr<Combiner> const next;
    Target& target;
    size_t const max_output_size;
    size_t const nterms;

    Set input = {};
    size_t output_size = 0;

    Combiner(Target& target, size_t nterms, size_t max_output_size)
        : next(nterms > 0 ? std::make_unique<Combiner>(target, nterms-1, max_output_size) : nullptr),
          target(target),
          max_output_size(max_output_size),
          nterms(nterms)
    {}

    inline void insert(const TermList&& t)
    {
        target.update(t);
        if (target.done()) return;
        if (next) {
            if (input.insert(t).second)
                output_size += count_distinct_pairs(t);
            if (output_size >= max_output_size)
                process_input();
        }
    }

    void finish()
    {
        process_input();
        if (next)
            next->finish();
    }

private:
    // Here's where we do the real work - generating and sifting the
    // combined terms for the next pass.
    void process_input()
    {
        if (target.done()) {
            return;
        }

        if (!next)
            return;

        // Move the elements into a vector, so we can parallelize the
        // for-loop.
        auto in = std::vector<Set::value_type>();
        in.reserve(input.size());
        std::move(input.begin(), input.end(), std::back_inserter(in));
        input.clear();
        output_size = 0;

        auto out = Set();

#pragma omp parallel reduction(merge:out)
        {
#pragma omp for
            for (auto it = in.begin();  it < in.end();  ++it)
            {
                try {
                    const auto end = it->terms.cend();
                    for (auto i = it->terms.cbegin();  i != end;  i = std::upper_bound(i, end, *i))
                        for (auto j = i+1;  j != end;  j = std::upper_bound(j, end, *j)) {
                            for (const auto& op: ops) {
                                auto x = op->make_term(*i, *j);
                                if (x) out.insert(replace(*it, i, j, x));
                            }
                        }
                } catch (const std::bad_alloc&) {
                    // Ignore it; process what we've generated so far.
                }
            }
        }

        // Now we're in single-threaded code, we can pass the combined
        // results to the next combiner.
        for (auto& o: out)
            next->insert(std::move(o));

        target.increase_threshold(out.size());
    }


    // Helper methods used by the above

    // An upper bound on the possible number of output TermLists,
    // assuming every combination is valid.  If all n terms in the
    // input list are distinct, that's just ½n(n-1), but if values
    // are duplicated, we need to reduce n to the number of distinct
    // values, and then add in the cases where we pick two of the
    // same value.
    static int count_distinct_pairs(const TermList& terms)
    {
        int distinct = 0, duplicated = 0;
        auto it = terms.terms.begin(),
            end = terms.terms.end();
        while (it != end) {
            ++distinct;
            auto const& v = (*it)->value;
            if (++it == end || (*it)->value != v) continue;
            ++duplicated;
            while (++it != end && (*it)->value == v)
                ;
        }
        return distinct * (distinct - 1) / 2 + duplicated;
    }

    // Create a new TermList from o by replacing elements i and j with
    // newly-created term n.
    static TermList replace(const TermList& o, auto i, auto j, std::shared_ptr<const Term> n)
    {
        std::vector<std::shared_ptr<const Term>> r;
        r.reserve(o.terms.size() - 1);
        auto added = false;
        for (auto k = o.terms.begin();  k != o.terms.end();  ++k) {
            if (!added && (*k)->value < n->value) { r.push_back(n); added = true; }
            if (k != i && k != j) r.push_back(*k);
        }
        if (!added) r.push_back(n);
        return { r, o.target_value };
    }
};


#include <iostream>
std::ostream& operator<<(std::ostream& o, const Term& t)
{
    return o << t.to_string()<< " = " << t.value;
}
std::ostream& operator<<(std::ostream& o, const TermList& t)
{
    auto *sep = "";
    o << "[" << t.badness << "] ";
    for (auto const& x: t.terms)
        o << sep << *x, sep = ", ";
    return o;
}

int main(int argc, char **argv)
{
    if (argc < 3) {
        std::cerr << "Usage: " << argv[0] << " target term ...";
        return EXIT_FAILURE;
    }
    auto target = Target{std::stol(*++argv)};

    std::vector<std::shared_ptr<const Term>> terms;
    while (*++argv) {
        auto t = std::make_shared<LiteralTerm>(*argv);
        target.update(*t);
        terms.push_back(t);
    }
    std::sort(terms.begin(), terms.end());

    // Construct the sieve
    Combiner search{target, terms.size(), 2500000/terms.size() + 1}; // tunable - max set size
    search.insert({terms, target.value});
    search.finish();

    std::cout << "score " << std::fixed << target.score() << " for " << target.best << std::endl;
}

Compilé esto usando GCC 6.2, usando g++ -std=c++17 -fopenmp -march=native -O3(junto con algunas opciones de depuración y advertencia).

Toby Speight
fuente
3

Python 2.7. Puntuación: 1,67039106

Entonces, decidí echarle un vistazo yo mismo. Nada muy elegante. Este programa clasifica los números en orden inverso (de mayor a menor) e intenta todos los operadores secuencialmente en los números. Increíblemente rápido, pero un rendimiento que merece ser reemplazado.

Aquí está el programa:

import sys

def score(current,target):
    return abs(1.0-current/float(target))

# Process input and init variables
targetvalue=int(sys.argv[1].strip(','))
numbers=[int(a.strip(',')) for a in sys.argv[2:]]
numbers.sort(reverse=True)
expression='('+str(numbers[0])+')'
currentvalue=nextvalue=testvalue=numbers[0]

# Loop over all values (except the first one)
for value in numbers[1:]:
    # Set multiplication as the reference operator...
    testvalue=currentvalue*value
    minscore=score(testvalue,targetvalue)
    operator="*"
    nextvalue=testvalue

    # then try division (only if result is integer and not divided by zero)...
    if value!=0 and currentvalue%value==0:
        testvalue=currentvalue/value
        if score(testvalue,targetvalue)<minscore:
            operator="/"
            minscore=score(testvalue,targetvalue)
            nextvalue=testvalue

    # and addition...
    testvalue=currentvalue+value
    if score(testvalue,targetvalue)<minscore:
        operator="+"
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # and subtraction...
    testvalue=currentvalue-value
    if score(testvalue,targetvalue)<minscore:
        operator="-"
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # and concatenation
    testvalue=int(str(currentvalue)+str(value))
    if score(testvalue,targetvalue)<minscore:
        operator=""
        minscore=score(testvalue,targetvalue)
        nextvalue=testvalue

    # finally check if any operator improces the score. If so, append to the expression
    if score(nextvalue,targetvalue)<score(currentvalue,targetvalue):
        expression='('+expression+operator+str(value)+')'
        currentvalue=nextvalue

print(expression)

La salida para todos los casos de prueba es:

((((((15)14)*13)-12)-11)-10)
((((((((((((999)996)+969)+966)+699)+696)+669)+666)*69)-66)-9)-6)
(((((((((333333333)+333333)+33333)+3333)+333)+33)+3)+3)+3)
(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((5)5)5)5)5)5)5)5)5)+5)+5)+5)+5)+5)+5)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+4)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+3)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+2)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)+1)
((((((((((((((((((((((((((((((((((((((((((((((199)197)193)+191)+181)+179)+173)+167)+163)+157)+151)+149)+139)+137)+131)+127)+113)+109)+107)+103)+101)+97)+89)+83)*79)-73)-71)-67)-61)-59)-53)-47)-43)-41)-37)-31)-29)-23)-19)-17)-13)-11)-7)-5)-3)/2)
(((((((((((((((((((((((((((((((992)930)870)+812)+756)+702)+650)+600)+552)+506)+462)+420)+380)+342)+306)+272)+240)+210)+182)*156)-132)-110)-90)-72)-56)-42)-30)/20)*12)-6)-2)
((((((((((((((((((((((((((((((((((((((39088169)+24157817)+14930352)+9227465)+5702887)+3524578)+2178309)+1346269)+832040)+514229)+317811)+196418)+121393)+75025)+46368)+28657)+17711)*10946)-6765)-4181)-2584)-1597)-987)-610)-377)-233)-144)-89)-55)-34)-21)-13)-8)-5)-3)/2)+1)+1)
(((((((((((((((((((((50000000)+20000000)+10000000)+5000000)+2000000)+100000)*50000)-20000)-10000)-5000)-2000)-1000)-500)-200)-100)-50)-20)-10)/5)*2)+1)
en cualquier lugar
fuente