Suma de dígitos de coeficientes binomiales centrales

13

La tarea es simplemente ver cuánto más rápido puede calcular n elegir n / 2 (para incluso n) que la función incorporada en python. Por supuesto, para n grande, este es un número bastante grande, por lo que en lugar de generar el número entero, debe generar la suma de los dígitos. Por ejemplo, para n = 100000, la respuesta es 135702. Pues n=1000000lo es 1354815.

Aquí está el código de Python:

from scipy.misc import comb
def sum_digits(n):
   r = 0
   while n:
       r, n = r + n % 10, n / 10
   return r
sum_digits(comb(n,n/2,exact=True))

Tu puntaje es (highest n on your machine using your code)/(highest n on your machine using my code). Su código debe terminar en 60 segundos o menos.

Su programa debe dar la salida correcta para todos los n pares: 2 <= n <= (su n más alto)

No puede usar ningún código incorporado o bibliotecas que calculen coeficientes binomiales o valores que puedan transformarse rápidamente en coeficientes binomiales.

Puede usar cualquier idioma de su elección.


Respuesta principal La respuesta principal actual con un sorprendente 680.09 es solo la mitad.


fuente
2
¿Se supone que debemos enviar soluciones en Python o en un lenguaje de elección?
Es posible escribir una rutina que haga esto en una computadora moderna y que llegue na millones, mientras que dudo que la función Python maneje algo mayor que n = 1e5sin asfixia.
COTO
@Alessandro Puedes usar cualquier idioma que elijas. La única restricción es que no puede usar funciones incorporadas para calcular los coeficientes.
2
¿Se permiten las funciones factoriales? Supuse que no, ya que podrían "transformarse rápidamente en coeficientes binomiales" (todo es solo un factorial dividido por otro factorial al cuadrado), pero dado que una respuesta está usando uno ahora, la claridad sería agradable.
Geobits
1
@Comintern: ¡He replicado con éxito ese punto de referencia con 287mil en 1 min, o 169mil en 35 segundos! :)
justhalf

Respuestas:

9

C ++ (GMP) - (287,000,000 / 422,000) = 680.09

Combina descaradamente el teorema de Kummer por xnor y GMP por qwr. Aún no está cerca de la solución Go, no estoy seguro de por qué.

Editar: Gracias Keith Randall por el recordatorio de que la multiplicación es más rápida si el número es similar en tamaño. Implementé la multiplicación multinivel, similar al concepto de fusión de memoria en la gestión de memoria. Y el resultado es impresionante. Lo que solía tomar 51 segundos, ahora solo toma 0.5 segundos (es decir, ¡una mejora de 100 veces!)

CÓDIGO ANTIGUO (n = 14,000,000)
Terminado el tamizado en 0.343s
Hecho el cálculo de binom en 51.929s
Hecho sumando en 0.901s
14000000: 18954729

0m53.194s reales
usuario 0m53.116s
sys 0m0.060s

NUEVO CÓDIGO (n = 14,000,000)
Terminado el tamizado en 0.343s
Hecho el cálculo de binom en 0.552s
Hecho sumando en 0.902s
14000000: 18954729

0m1.804s reales
usuario 0m1.776s
sys 0m0.023s

La carrera por n=287,000,000

Terminado el tamizado en 4.211s
Terminé de calcular el binomio en 17.934
Hecho sumando en 37.677s
287000000: 388788354

0m59.928s reales
usuario 0m58.759s
sys 0m1.116s

El código. Compilar con-lgmp -lgmpxx -O3

#include <gmpxx.h>
#include <iostream>
#include <time.h>
#include <cstdio>

const int MAX=287000000;
const int PRIME_COUNT=15700000;

int primes[PRIME_COUNT], factors[PRIME_COUNT], count;
bool sieve[MAX];
int max_idx=0;

void run_sieve(){
    sieve[2] = true;
    primes[0] = 2;
    count = 1;
    for(int i=3; i<MAX; i+=2){
        sieve[i] = true;
    }
    for(int i=3; i<17000; i+=2){
        if(!sieve[i]) continue;
        for(int j = i*i; j<MAX; j+=i){
            sieve[j] = false;
        }
    }
    for(int i=3; i<MAX; i+=2){
        if(sieve[i]) primes[count++] = i;
    }
}

mpz_class sum_digits(mpz_class n){
    clock_t t = clock();
    char* str = mpz_get_str(NULL, 10, n.get_mpz_t());
    int result = 0;
    for(int i=0;str[i]>0;i++){
        result+=str[i]-48;
    }
    printf("Done summing in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    return result;
}

mpz_class nc2_fast(const mpz_class &x){
    clock_t t = clock();
    int prime;
    const unsigned int n = mpz_get_ui(x.get_mpz_t());
    const unsigned int n2 = n/2;
    unsigned int m;
    unsigned int digit;
    unsigned int carry=0;
    unsigned int carries=0;
    mpz_class result = 1;
    mpz_class prime_prods = 1;
    mpz_class tmp;
    mpz_class tmp_prods[32], tmp_prime_prods[32];
    for(int i=0; i<32; i++){
        tmp_prods[i] = (mpz_class)NULL;
        tmp_prime_prods[i] = (mpz_class)NULL;
    }
    for(int i=0; i< count; i++){
        prime = primes[i];
        carry=0;
        carries=0;
        if(prime > n) break;
        if(prime > n2){
            tmp = prime;
            for(int j=0; j<32; j++){
                if(tmp_prime_prods[j] == NULL){
                    tmp_prime_prods[j] = tmp;
                    break;
                } else {
                    mpz_mul(tmp.get_mpz_t(), tmp.get_mpz_t(), tmp_prime_prods[j].get_mpz_t());
                    tmp_prime_prods[j] = (mpz_class)NULL;
                }
            }
            continue;
        }
        m=n2;
        while(m>0){
            digit = m%prime;
            carry = (2*digit + carry >= prime) ? 1 : 0;
            carries += carry;
            m/=prime;
        }
        if(carries>0){
            tmp = 0;
            mpz_ui_pow_ui(tmp.get_mpz_t(), prime, carries);
            for(int j=0; j<32; j++){
                if(tmp_prods[j] == NULL){
                    tmp_prods[j] = tmp;
                    break;
                } else {
                    mpz_mul(tmp.get_mpz_t(), tmp.get_mpz_t(), tmp_prods[j].get_mpz_t());
                    tmp_prods[j] = (mpz_class)NULL;
                }
            }
        }
    }
    result = 1;
    prime_prods = 1;
    for(int j=0; j<32; j++){
        if(tmp_prods[j] != NULL){
            mpz_mul(result.get_mpz_t(), result.get_mpz_t(), tmp_prods[j].get_mpz_t());
        }
        if(tmp_prime_prods[j] != NULL){
            mpz_mul(prime_prods.get_mpz_t(), prime_prods.get_mpz_t(), tmp_prime_prods[j].get_mpz_t());
        }
    }
    mpz_mul(result.get_mpz_t(), result.get_mpz_t(), prime_prods.get_mpz_t());
    printf("Done calculating binom in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    return result;
}

int main(int argc, char* argv[]){
    const mpz_class n = atoi(argv[1]);
    clock_t t = clock();
    run_sieve();
    printf("Done sieving in %.3fs\n", ((float)(clock()-t))/CLOCKS_PER_SEC);
    std::cout << n << ": " << sum_digits(nc2_fast(n)) << std::endl;
    return 0;
}
justo
fuente
2
Las multiplicaciones son más eficientes si ambos operandos tienen aproximadamente el mismo tamaño. Siempre estás multiplicando un gran número por un pequeño número. Si combina repetidamente los números pequeños en pares, podría ser más rápido (pero requiere más memoria).
Keith Randall
Wow, eso hace mucha diferencia. Es exponencialmente más rápido. Ahora puedo llegar a 169mil en 35 segundos.
justhalf
Wow de verdad! ¿Cuál es el desglose a tiempo para las diferentes partes de su código?
Ya lo puse en mi respuesta. 4s en la generación de primos hasta n, 18s calculando el coeficiente binomial central, y el resto 37s en la conversión del resultado en cadena y sumando el dígito.
justhalf
1
Creo que esta respuesta debería ser contribuida a cualquier biblioteca de código abierto que calcule coeficientes binomiales. ¡No puedo creer que nadie más tenga un código tan rápido!
7

Ir, 33.96 = (16300000/480000)

package main

import "math/big"

const n = 16300000

var (
    sieve     [n + 1]bool
    remaining [n + 1]int
    count     [n + 1]int
)

func main() {
    println("finding primes")
    for p := 2; p <= n; p++ {
        if sieve[p] {
            continue
        }
        for i := p * p; i <= n; i += p {
            sieve[i] = true
        }
    }

    // count net number of times each prime appears in the result.
    println("counting factors")
    for i := 2; i <= n; i++ {
        remaining[i] = i
    }
    for p := 2; p <= n; p++ {
        if sieve[p] {
            continue
        }

        for i := p; i <= n; i += p {
            for remaining[i]%p == 0 { // may have multiple factors of p
                remaining[i] /= p

                // count positive for n!
                count[p]++
                // count negative twice for ((n/2)!)^2
                if i <= n/2 {
                    count[p] -= 2
                }
            }
        }
    }

    // ignore all the trailing zeros
    count[2] -= count[5]
    count[5] = 0

    println("listing factors")
    var m []uint64
    for i := 0; i <= n; i++ {
        for count[i] > 0 {
            m = append(m, uint64(i))
            count[i]--
        }
    }

    println("grouping factors")
    m = group(m)

    println("multiplying")
    x := mul(m)

    println("converting to base 10")
    d := 0
    for _, c := range x.String() {
        d += int(c - '0')
    }
    println("sum of digits:", d)
}

// Return product of elements in a.
func mul(a []uint64) *big.Int {
    if len(a) == 1 {
        x := big.NewInt(0)
        x.SetUint64(a[0])
        return x
    }
    m := len(a) / 2
    x := mul(a[:m])
    y := mul(a[m:])
    x.Mul(x, y) // fast because x and y are about the same length
    return x
}

// return a slice whose members have the same product
// as the input slice, but hopefully shorter.
func group(a []uint64) []uint64 {
    var g []uint64
    r := uint64(1)
    b := 1
    for _, x := range a {
        c := bits(x)
        if b+c <= 64 {
            r *= x
            b += c
        } else {
            g = append(g, r)
            r = x
            b = c
        }
    }
    g = append(g, r)
    return g
}

// bits returns the number of bits in the representation of x
func bits(x uint64) int {
    n := 0
    for x != 0 {
        n++
        x >>= 1
    }
    return n
}

Funciona contando todos los factores primos en el numerador y el denominador y cancelando los factores coincidentes. Multiplica las sobras para obtener el resultado.

Más del 80% del tiempo se gasta en la conversión a la base 10. Tiene que haber una mejor manera de hacerlo ...

Keith Randall
fuente
Para problemas que requieren la impresión de números grandes en la base 10, generalmente me resulta útil escribir mi propia clase BigInteger que almacena números en la base 1E9 ~ 2 ^ 30.
Peter Taylor
Actualmente estás ganando por una milla de campo ... como dicen.
@PeterTaylor: Intenté eso, pero requiere mucho% 1e9 en el código de multiplicación, lo que hace que la multiplicación sea lenta.
Keith Randall
6

Python 3 (8.8 = 2.2 millones / 0.25 millones)

Esto está en Python, que no es conocido por la velocidad, por lo que probablemente pueda hacerlo mejor portando esto a otro idioma.

Generador de Primes tomado de este concurso StackOverflow .

import numpy
import time

def primesfrom2to(n):
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
    for i in range(1,int(n**0.5)//3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[       k*k/3     ::2*k] = False
            sieve[k*(k-2*(i&1)+4)/3::2*k] = False
    return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]

t0 = time.clock()

N=220*10**4
n=N//2

print("N = %d" % N)
print()

print("Generating primes.")
primes = primesfrom2to(N)

t1 = time.clock()
print ("Time taken: %f" % (t1-t0))

print("Computing product.")
product = 1

for p in primes:
    p=int(p)
    carries = 0 
    carry = 0

    if p>n:
        product*=p
        continue

    m=n

    #Count carries of n+n in base p as per Kummer's Theorem
    while m:
        digit = m%p
        carry = (2*digit + carry >= p)
        carries += carry
        m//=p

    if carries >0:
        for _ in range(carries):
            product *= p

    #print(p,carries,product)

t2 = time.clock()
print ("Time taken: %f" % (t2-t1))

print("Converting number to string.")

# digit_sum = 0
# result=product

# while result:
    # digit_sum+=result%10
    # result//=10

digit_sum = 0
digit_string = str(product)

t3 = time.clock()
print ("Time taken: %f" % (t3-t2))

print("Summing digits.")
for d in str(digit_string):digit_sum+=int(d)

t4 = time.clock()
print ("Time taken: %f" % (t4-t3))
print ()

print ("Total time: %f" % (t4-t0))
print()
print("Sum of digits = %d" % digit_sum)

La idea principal del algoritmo es utilizar el teorema de Kummer para obtener la factorización prima del binomio. Para cada cebado, aprendemos la potencia más alta que divide la respuesta, y multiplicamos el producto en ejecución por ese poder del cebado. De esta manera, solo necesitamos multiplicar una vez por cada primo en la factorización prima de la respuesta.

Salida que muestra el desglose del tiempo:

N = 2200000
Generating primes.
Time taken: 0.046408
Computing product.
Time taken: 17.931472
Converting number to string.
Time taken: 39.083390
Summing digits.
Time taken: 1.502393

Total time: 58.563664

Sum of digits = 2980107

Sorprendentemente, la mayor parte del tiempo se dedica a convertir el número en una cadena para sumar sus dígitos. También sorprendentemente, la conversión a una cadena fue mucho más rápida que obtener dígitos repetidos %10y //10, a pesar de que toda la cadena debe mantenerse en la memoria.

Generar los números primos lleva un tiempo insignificante (y, por lo tanto, no me parece injusto copiar el código existente). Sumar dígitos es rápido. La multiplicación real toma un tercio del tiempo.

Dado que la suma de dígitos parece ser el factor limitante, quizás un algoritmo para multiplicar números en representación decimal ahorraría tiempo en total al atajar la conversión binaria / decimal.

xnor
fuente
¡Esto es muy impresionante y te hace preguntarte por qué cpython no usa tu implementación!
3

Java (puntuación 22500/365000 = 0.062)

No tengo Python en esta máquina, así que si alguien pudiera calificar esto, estaría agradecido. Si no, tendrá que esperar.


(2nortenorte)=k=0 0norte(nortek)2

El cuello de botella es la adición para calcular la sección relevante del triángulo de Pascal (90% del tiempo de ejecución), por lo que usar un mejor algoritmo de multiplicación realmente no ayudaría.

Tenga en cuenta que lo que llama la pregunta nes lo que yo llamo 2n. El argumento de la línea de comandos es lo que llama la pregunta n.

public class CodeGolf37270 {
    public static void main(String[] args) {
        if (args.length != 1) {
            System.err.println("Usage: java CodeGolf37270 <n>");
            System.exit(1);
        }

        int two_n = Integer.parseInt(args[0]);
        // \binom{2n}{n} = \sum_{k=0}^n \binom{n}{k}^2
        // Two cases:
        //   n = 2m: \binom{4m}{2m} = \binom{2m}{m}^2 + 2\sum_{k=0}^{m-1} \binom{2m}{k}^2
        //   n = 2m+1: \binom{4m+2}{2m+1} = 2\sum_{k=0}^{m} \binom{2m+1}{k}^2
        int n = two_n / 2;
        BigInt[] nCk = new BigInt[n/2 + 1];
        nCk[0] = new BigInt(1);
        for (int k = 1; k < nCk.length; k++) nCk[k] = nCk[0];
        for (int row = 2; row <= n; row++) {
            BigInt tmp = nCk[0];
            for (int col = 1; col < row && col < nCk.length; col++) {
                BigInt replacement = tmp.add(nCk[col]);
                tmp = nCk[col];
                nCk[col] = replacement;
            }
        }

        BigInt central = nCk[0]; // 1^2 = 1
        int lim = (n & 1) == 1 ? nCk.length : (nCk.length - 1);
        for (int k = 1; k < lim; k++) central = central.add(nCk[k].sq());
        central = central.add(central);
        if ((n & 1) == 0) central = central.add(nCk[nCk.length - 1].sq());

        System.out.println(central.digsum());
    }

    private static class BigInt {
        static final int B = 1000000000;
        private int[] val;

        public BigInt(int x) {
            val = new int[] { x };
        }

        private BigInt(int[] val) {
            this.val = val;
        }

        public BigInt add(BigInt that) {
            int[] left, right;
            if (val.length < that.val.length) {
                left = that.val;
                right = val;
            }
            else {
                left = val;
                right = that.val;
            }

            int[] sum = left.clone();
            int carry = 0, k = 0;
            for (; k < right.length; k++) {
                int a = sum[k] + right[k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            while (carry > 0 && k < sum.length) {
                int a = sum[k] + carry;
                sum[k] = a % B;
                carry = a / B;
                k++;
            }
            if (carry > 0) {
                int[] wider = new int[sum.length + 1];
                System.arraycopy(sum, 0, wider, 0, sum.length);
                wider[sum.length] = carry;
                sum = wider;
            }

            return new BigInt(sum);
        }

        public BigInt sq() {
            int[] rv = new int[2 * val.length];
            // Naive multiplication
            for (int i = 0; i < val.length; i++) {
                for (int j = i; j < val.length; j++) {
                    int k = i+j;
                    long c = val[i] * (long)val[j];
                    if (j > i) c <<= 1;
                    while (c > 0) {
                        c += rv[k];
                        rv[k] = (int)(c % B);
                        c /= B;
                        k++;
                    }
                }
            }

            int len = rv.length;
            while (len > 1 && rv[len - 1] == 0) len--;
            if (len < rv.length) {
                int[] rv2 = new int[len];
                System.arraycopy(rv, 0, rv2, 0, len);
                rv = rv2;
            }

            return new BigInt(rv);
        }

        public long digsum() {
            long rv = 0;
            for (int i = 0; i < val.length; i++) {
                int x = val[i];
                while (x > 0) {
                    rv += x % 10;
                    x /= 10;
                }
            }
            return rv;
        }
    }
}
Peter Taylor
fuente
Obtengo 29,500 para su programa y 440,000 para el programa de referencia, por lo que sería un puntaje de 0.067. Esto está compilando con Java 1.7 ( javac CodeGolf37270.java) y ejecutándose con Java 1.8 ( java CodeGolf37270 n). No estoy seguro de si hay opciones de optimización que desconozco. No puedo intentar compilar con Java 1.8, porque no se instala con mi paquete Java ...
Dennis
Enfoque interesante ¿Por qué crees que calcularlo iterativamente podría ser más rápido que usar la fórmula simple?
justhalf
@justhalf, no tenía la intuición de si sería más rápido o no, y no intenté hacer cálculos de complejidad. Busqué en las listas de identidades los coeficientes binomiales centrales para tratar de encontrar fórmulas que serían simples de implementar con una clase entera grande personalizada optimizada para extraer dígitos de base 10. Y habiendo descubierto que no es muy eficiente, podría publicarlo y evitar que alguien más repita el experimento. (FWIW Estoy trabajando en la multiplicación de Toom, pero no estoy seguro de cuándo lo probaré y lo depuraré).
Peter Taylor
2

GMP - 1500000/300000 = 5.0

Aunque esta respuesta no competirá contra los tamices, a veces el código corto aún puede obtener resultados.

#include <gmpxx.h>
#include <iostream>

mpz_class sum_digits(mpz_class n)
{
    char* str = mpz_get_str(NULL, 10, n.get_mpz_t());
    int result = 0;
    for(int i=0; str[i]>0; i++)

    result += str[i] - 48;

    return result;
}


mpz_class comb_2(const mpz_class &x)
{
    const unsigned int k = mpz_get_ui(x.get_mpz_t()) / 2;
    mpz_class result = k + 1;

    for(int i=2; i<=k; i++)
    {
        result *= k + i;
        mpz_divexact_ui(result.get_mpz_t(), result.get_mpz_t(), i);
    }

    return result;
}

int main()
{
    const mpz_class n = 1500000;
    std::cout << sum_digits(comb_2(n)) << std::endl;

    return 0;
}
qwr
fuente
2

Java, clase entera grande personalizada: 32.9 (120000000/365000)

La clase principal es bastante sencilla:

import java.util.*;

public class PPCG37270 {
    public static void main(String[] args) {
        long start = System.nanoTime();

        int n = 12000000;
        if (args.length == 1) n = Integer.parseInt(args[0]);

        boolean[] sieve = new boolean[n + 1];
        int[] remaining = new int[n + 1];
        int[] count = new int[n + 1];

        for (int p = 2; p <= n; p++) {
            if (sieve[p]) continue;
            long p2 = p * (long)p;
            if (p2 > n) continue;
            for (int i = (int)p2; i <= n; i += p) sieve[i] = true;
        }

        for (int i = 2; i <= n; i++) remaining[i] = i;
        for (int p = 2; p <= n; p++) {
            if (sieve[p]) continue;
            for (int i = p; i <= n; i += p) {
                while (remaining[i] % p == 0) {
                    remaining[i] /= p;
                    count[p]++;
                    if (i <= n/2) count[p] -= 2;
                }
            }
        }

        count[2] -= count[5];
        count[5] = 0;

        List<BigInt> partialProd = new ArrayList<BigInt>();
        long accum = 1;
        for (int i = 2; i <= n; i++) {
            for (int j = count[i]; j > 0; j--) {
                long tmp = accum * i;
                if (tmp < 1000000000L) accum = tmp;
                else {
                    partialProd.add(new BigInt((int)accum));
                    accum = i;
                }
            }
        }
        partialProd.add(new BigInt((int)accum));
        System.out.println(prod(partialProd).digsum());
        System.out.println((System.nanoTime() - start) / 1000000 + "ms");
    }

    private static BigInt prod(List<BigInt> vals) {
        while (vals.size() > 1) {
            int n = vals.size();
            List<BigInt> next = new ArrayList<BigInt>();
            for (int i = 0; i < n; i += 2) {
                if (i == n - 1) next.add(vals.get(i));
                else next.add(vals.get(i).mul(vals.get(i+1)));
            }
            vals = next;
        }
        return vals.get(0);
    }
}

Se basa en una gran clase entera que está optimizada para la multiplicación y toString()que son cuellos de botella significativos en una implementación con java.math.BigInteger.

/**
 * A big integer class which is optimised for conversion to decimal.
 * For use in simple applications where BigInteger.toString() is a bottleneck.
 */
public class BigInt {
    // The base of the representation.
    private static final int B = 1000000000;
    // The number of decimal digits per digit of the representation.
    private static final int LOG10_B = 9;

    public static final BigInt ZERO = new BigInt(0);
    public static final BigInt ONE = new BigInt(1);

    // We use sign-magnitude representation.
    private final boolean negative;

    // Least significant digit is at val[off]; most significant is at val[off + len - 1]
    // Unless len == 1 we guarantee that val[off + len - 1] is non-zero.
    private final int[] val;
    private final int off;
    private final int len;

    // Toom-style multiplication parameters from
    // Zuras, D. (1994). More on squaring and multiplying large integers. IEEE Transactions on Computers, 43(8), 899-908.
    private static final int[][][] Q = new int[][][]{
        {},
        {},
        {{1, -1}},
        {{4, 2, 1}, {1, 1, 1}, {1, 2, 4}},
        {{8, 4, 2, 1}, {-8, 4, -2, 1}, {1, 1, 1, 1}, {1, -2, 4, -8}, {1, 2, 4, 8}}
    };
    private static final int[][][] R = new int[][][]{
        {},
        {},
        {{1, -1, 1}},
        {{-21, 2, -12, 1, -6}, {7, -1, 10, -1, 7}, {-6, 1, -12, 2, -21}},
        {{-180, 6, 2, -80, 1, 3, -180}, {-510, 4, 4, 0, -1, -1, 120}, {1530, -27, -7, 680, -7, -27, 1530}, {120, -1, -1, 0, 4, 4, -510}, {-180, 3, 1, -80, 2, 6, -180}}
    };
    private static final int[][] S = new int[][]{
        {},
        {},
        {1, 1, 1},
        {1, 6, 2, 6, 1},
        {1, 180, 120, 360, 120, 180, 1}
    };

    /**
     * Constructs a big version of an integer value.
     * @param x The value to represent.
     */
    public BigInt(int x) {
        this(Integer.toString(x));
    }

    /**
     * Constructs a big version of a long value.
     * @param x The value to represent.
     */
    public BigInt(long x) {
        this(Long.toString(x));
    }

    /**
     * Parses a decimal representation of an integer.
     * @param str The value to represent.
     */
    public BigInt(String str) {
        this(str.charAt(0) == '-', split(str));
    }

    /**
     * Constructs a sign-magnitude representation taking the entire span of the array as the range of interest.
     * @param neg Is the value negative?
     * @param val The base-B digits, least significant first.
     */
    private BigInt(boolean neg, int[] val) {
        this(neg, val, 0, val.length);
    }

    /**
     * Constructs a sign-magnitude representation taking a range of an array as the magnitude.
     * @param neg Is the value negative?
     * @param val The base-B digits, least significant at offset off, most significant at off + val - 1.
     * @param off The offset within the array.
     * @param len The number of base-B digits.
     */
    private BigInt(boolean neg, int[] val, int off, int len) {
        // Bounds checks
        if (val == null) throw new IllegalArgumentException("val");
        if (off < 0 || off >= val.length) throw new IllegalArgumentException("off");
        if (len < 1 || off + len > val.length) throw new IllegalArgumentException("len");

        this.negative = neg;
        this.val = val;
        this.off = off;
        // Enforce the invariant that this.len is 1 or val[off + len - 1] is non-zero.
        while (len > 1 && val[off + len - 1] == 0) len--;
        this.len = len;

        // Sanity check
        for (int i = 0; i < len; i++) {
            if (val[off + i] < 0) throw new IllegalArgumentException("val contains negative digits");
        }
    }

    /**
     * Splits a string into base-B digits.
     * @param str The string to parse.
     * @return An array which can be passed to the (boolean, int[]) constructor.
     */
    private static int[] split(String str) {
        if (str.charAt(0) == '-') str = str.substring(1);

        int[] arr = new int[(str.length() + LOG10_B - 1) / LOG10_B];
        int i, off;
        // Each element of arr represents LOG10_B characters except (probably) the last one.
        for (i = 0, off = str.length() - LOG10_B; off > 0; off -= LOG10_B) {
            arr[i++] = Integer.parseInt(str.substring(off, off + LOG10_B));
        }
        arr[i] = Integer.parseInt(str.substring(0, off + LOG10_B));
        return arr;
    }

    public boolean isZero() {
        return len == 1 && val[off] == 0;
    }

    public BigInt negate() {
        return new BigInt(!negative, val, off, len);
    }

    public BigInt add(BigInt that) {
        // If the signs differ, then since we use sign-magnitude representation we want to do a subtraction.
        boolean isSubtraction = negative ^ that.negative;

        BigInt left, right;
        if (len < that.len) {
            left = that;
            right = this;
        }
        else {
            left = this;
            right = that;

            // For addition I just care about the lengths of the arrays.
            // For subtraction I want the largest absolute value on the left.
            if (isSubtraction && len == that.len) {
                int cmp = compareAbsolute(that);
                if (cmp == 0) return ZERO; // Cheap special case
                if (cmp < 0) {
                    left = that;
                    right = this;
                }
            }
        }

        if (right.isZero()) return left;

        BigInt result;
        if (!isSubtraction) {
            int[] sum = new int[left.len + 1];
            // A copy here rather than using left.val in the main loops and copying remaining values
            // at the end gives a small performance boost, probably due to cache locality.
            System.arraycopy(left.val, left.off, sum, 0, left.len);

            int carry = 0, k = 0;
            for (; k < right.len; k++) {
                int a = sum[k] + right.val[right.off + k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            for (; carry > 0 && k < left.len; k++) {
                int a = sum[k] + carry;
                sum[k] = a % B;
                carry = a / B;
            }
            sum[left.len] = carry;

            result = new BigInt(negative, sum);
        }
        else {
            int[] diff = new int[left.len];
            System.arraycopy(left.val, left.off, diff, 0, left.len);

            int carry = 0, k = 0;
            for (; k < right.len; k++) {
                int a = diff[k] - right.val[right.off + k] + carry;
                // Why did anyone ever think that rounding positive and negative divisions differently made sense?
                if (a < 0) {
                    diff[k] = a + B;
                    carry = -1;
                }
                else {
                    diff[k] = a % B;
                    carry = a / B;
                }
            }
            for (; carry != 0 && k < left.len; k++) {
                int a = diff[k] + carry;
                if (a < 0) {
                    diff[k] = a + B;
                    carry = -1;
                }
                else {
                    diff[k] = a % B;
                    carry = a / B;
                }
            }

            result = new BigInt(left.negative, diff, 0, k > left.len ? k : left.len);
        }

        return result;
    }

    private int compareAbsolute(BigInt that) {
        if (len > that.len) return 1;
        if (len < that.len) return -1;

        for (int i = len - 1; i >= 0; i--) {
            if (val[off + i] > that.val[that.off + i]) return 1;
            if (val[off + i] < that.val[that.off + i]) return -1;
        }

        return 0;
    }

    public BigInt mul(BigInt that) {
        if (isZero() || that.isZero()) return ZERO;

        if (len == 1) return that.mulSmall(negative ? -val[off] : val[off]);
        if (that.len == 1) return mulSmall(that.negative ? -that.val[that.off] : that.val[that.off]);

        int shorter = len < that.len ? len : that.len;
        BigInt result;
        // Cutoffs have been hand-tuned.
        if (shorter > 300) result = mulToom(3, that);
        else if (shorter > 28) result = mulToom(2, that);
        else result = mulNaive(that);

        return result;
    }

    BigInt mulSmall(int m) {
        if (m == 0) return ZERO;
        if (m == 1) return this;
        if (m == -1) return negate();

        // We want to do the magnitude calculation with a positive multiplicand.
        boolean neg = negative;
        if (m < 0) {
            neg = !neg;
            m = -m;
        }

        int[] pr = new int[len + 1];
        int carry = 0;
        for (int i = 0; i < len; i++) {
            long t = val[off + i] * (long)m + carry;
            pr[i] = (int)(t % B);
            carry = (int)(t / B);
        }
        pr[len] = carry;
        return new BigInt(neg, pr);
    }

    // NB This truncates.
    BigInt divSmall(int d) {
        if (d == 0) throw new ArithmeticException();
        if (d == 1) return this;
        if (d == -1) return negate();

        // We want to do the magnitude calculation with a positive divisor.
        boolean neg = negative;
        if (d < 0) {
            neg = !neg;
            d = -d;
        }

        int[] div = new int[len];
        int rem = 0;
        for (int i = len - 1; i >= 0; i--) {
            long t = val[off + i] + rem * (long)B;
            div[i] = (int)(t / d);
            rem = (int)(t % d);
        }

        return new BigInt(neg, div);
    }

    BigInt mulNaive(BigInt that) {
        int[] rv = new int[len + that.len];
        // Naive multiplication
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < that.len; j++) {
                int k = i + j;
                long c = val[off + i] * (long)that.val[that.off + j];
                while (c > 0) {
                    c += rv[k];
                    rv[k] = (int)(c % B);
                    c /= B;
                    k++;
                }
            }
        }

        return new BigInt(this.negative ^ that.negative, rv);
    }

    private BigInt mulToom(int k, BigInt that) {
        // We split each number into k parts of m base-B digits each.
        // m = ceil(longer / k)
        int m = ((len > that.len ? len : that.len) + k - 1) / k;

        // Perform the splitting and evaluation steps of Toom-Cook.
        BigInt[] f1 = this.toomFwd(k, m);
        BigInt[] f2 = that.toomFwd(k, m);

        // Pointwise multiplication.
        for (int i = 0; i < f1.length; i++) f1[i] = f1[i].mul(f2[i]);

        // Inverse (or interpolation) and recomposition.
        return toomBk(k, m, f1, negative ^ that.negative, val[off], that.val[that.off]);
    }

    // Splits a number into k parts of m base-B digits each and does the polynomial evaluation.
    private BigInt[] toomFwd(int k, int m) {
        // Split.
        BigInt[] a = new BigInt[k];
        for (int i = 0; i < k; i++) {
            int o = i * m;
            if (o >= len) a[i] = ZERO;
            else {
                int l = m;
                if (o + l > len) l = len - o;
                // Ignore signs for now.
                a[i] = new BigInt(false, val, off + o, l);
            }
        }

        // Evaluate
        return transform(Q[k], a);
    }

    private BigInt toomBk(int k, int m, BigInt[] f, boolean neg, int lsd1, int lsd2) {
        // Inverse (or interpolation).
        BigInt[] b = transform(R[k], f);

        // Recomposition: add at suitable offsets, dividing by the normalisation factors
        BigInt prod = ZERO;
        int[] s = S[k];
        for (int i = 0; i < b.length; i++) {
            int[] shifted = new int[i * m + b[i].len];
            System.arraycopy(b[i].val, b[i].off, shifted, i * m, b[i].len);
            prod = prod.add(new BigInt(neg ^ b[i].negative, shifted).divSmall(s[i]));
        }

        // Handle the remainders.
        // In the worst case the absolute value of the sum of the remainders is s.length, so pretty small.
        // It should be easy enough to work out whether to go up or down.
        int lsd = (int)((lsd1 * (long)lsd2) % B);
        int err = lsd - prod.val[prod.off];
        if (err > B / 2) err -= B / 2;
        if (err < -B / 2) err += B / 2;
        return prod.add(new BigInt(err));
    }

    /**
     * Multiplies a matrix of small integers and a vector of big ones.
     * The matrix has a implicit leading row [1 0 ... 0] and an implicit trailing row [0 ... 0 1].
     * @param m The matrix.
     * @param v The vector.
     * @return m v
     */
    private BigInt[] transform(int[][] m, BigInt[] v) {
        BigInt[] b = new BigInt[m.length + 2];
        b[0] = v[0];
        for (int i = 0; i < m.length; i++) {
            BigInt s = ZERO;
            for (int j = 0; j < m[i].length; j++) s = s.add(v[j].mulSmall(m[i][j]));
            b[i + 1] = s;
        }
        b[b.length - 1] = v[v.length - 1];

        return b;
    }

    /**
     * Sums the digits of this integer.
     * @return The sum of the digits of this integer.
     */
    public long digsum() {
        long rv = 0;
        for (int i = 0; i < len; i++) {
            int x = val[off + i];
            while (x > 0) {
                rv += x % 10;
                x /= 10;
            }
        }
        return rv;
    }
}

El gran cuello de botella es la multiplicación ingenua (60%), seguida de la otra multiplicación (37%) y el tamizado (3%). La digsum()llamada es insignificante.

Rendimiento medido con OpenJDK 7 (64 bit).

Peter Taylor
fuente
Muy agradable. Gracias.
1

Python 2 (PyPy), 1,134,000 / 486,000 = 2.32

#/!usr/bin/pypy
n=input(); a, b, c=1, 1, 2**((n+2)/4)
for i in range(n-1, n/2, -2): a*=i
for i in range(2, n/4+1): b*=i
print sum(map(int, str(a*c/b)))

Resultado: 1,537,506

Dato curioso: el cuello de botella de su código es agregar los dígitos, no calcular el coeficiente binomial.

Dennis
fuente
¿Por qué Python es tan lento para agregar dígitos? Tanto tú como xnor dicen que sí. Me dio curiosidad, así que marqué el mío. Llegó en menos de un segundo para la parte de suma (Java).
Geobits
@Geobits Hmm, curioso. ¿Java también puede realizar conversiones binarias-decimales de manera similar rápida? Representa enteros en binario, ¿verdad?
xnor
Buena pregunta. Para entero / entero / largo / largo, sé que es binario. No estoy exactamente seguro de cuál es la representación interna de un BigInteger. Si es decimal, eso definitivamente explicaría por qué es lento en matemáticas pero rápido para convertir en una cadena. Puede buscar eso mañana.
Geobits
@Geobits, la representación interna de BigInteger es la base 2.
Peter Taylor
Siempre lo asumí, pero me hizo preguntarme. Parece que lo está dividiendo en trozos de gran tamaño y lo está convirtiendo de esa manera, al menos en OpenJDK.
Geobits
1

Java (2,020,000 / 491,000) = 4.11

actualizado, previamente 2.24

Java BigIntegerno es el generador de números más rápido, pero es mejor que nada.

La fórmula básica para esto parece ser n! / ((n/2)!^2), pero parece un montón de multiplicación redundante.

Puede obtener una aceleración significativa al eliminar todos los factores primos que se encuentran tanto en el numerador como en el denominador. Para hacer esto, primero ejecuto un tamiz primario simple. Luego, para cada cebado, mantengo un recuento del poder al que necesita elevarse. Incremento cada vez que veo un factor en el numerador, decremento para el denominador.

Manejo dos por separado (y primero), ya que es fácil contarlos / eliminarlos antes de factorizar.

Una vez hecho esto, tiene la cantidad mínima de multiplicaciones necesaria, lo cual es bueno porque BigInt multiplica es lento .

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;

public class CentBiCo {
    public static void main(String[] args) {
        int n = 2020000;
        long time = System.currentTimeMillis();
        sieve(n);
        System.out.println(sumDigits(cbc(n)));
        System.out.println(System.currentTimeMillis()-time);
    }

    static boolean[] sieve;
    static List<Integer> primes;
    static void sieve(int n){
        primes = new ArrayList<Integer>((int)(Math.sqrt(n)));
        sieve = new boolean[n];
        sieve[2]=true;
        for(int i=3;i<sieve.length;i+=2)
            if(i%2==1)
                sieve[i] = true;
        for(int i=3;i<sieve.length;i+=2){
            if(!sieve[i])
                continue;
            for(int j=i*2;j<sieve.length;j+=i)
                sieve[j] = false;
        }
        for(int i=2;i<sieve.length;i++)
            if(sieve[i])
                primes.add(i);
    }

    static int[] factors;
    static void addFactors(int n, int flip){
        for(int k=0;primes.get(k)<=n;){
            int i = primes.get(k);
            if(n%i==0){
                factors[i] += flip;
                n /= i;
            } else {
                if(++k == primes.size())
                    break;
            }
        }
        factors[n]++;
    }

    static BigInteger cbc(int n){
        factors = new int[n+1];
        int x = n/2;
        for(int i=x%2<1?x+1:x+2;i<n;i+=2)
            addFactors(i,1);
        factors[2] = x;
        for(int i=1;i<=x/2;i++){
            int j=i;
            while(j%2<1 && factors[2] > 1){
                j=j/2;
                factors[2]--;
            }
            addFactors(j,-1);
            factors[2]--;
        }
        BigInteger cbc = BigInteger.ONE;
        for(int i=3;i<factors.length;i++){
            if(factors[i]>0)
                cbc = cbc.multiply(BigInteger.valueOf(i).pow(factors[i]));
        }
        return cbc.shiftLeft(factors[2]);
    }

    static long sumDigits(BigInteger in){
        long sum = 0;
        String str = in.toString();
        for(int i=0;i<str.length();i++)
            sum += str.charAt(i)-'0';
        return sum;
    }
}

Ah, y la suma de salida para n = 2020000 es 2735298, para fines de verificación.

Geobits
fuente