Algoritmo evolutivo reflexivo

10

Tienes que escribir un programa, implementando una función digitsum(int i). El programa tiene que modificar su propio código (para los idiomas, donde esto no es posible con una reflexión fe , por favor sea creativo) para resolver el objetivo.

Empiezas con

function digitsum(int i){
    return i;
}

e implementar un algoritmo evolutivo que modificará la función anterior hasta que devuelva dígitos válidos en la llamada a la función.

Como este es un concurso de popularidad, tienes muchas manos libres, ¡sé creativo!

Pautas:

  • Comience con la función definida (traducida a su idioma, por supuesto).
  • Imprima al menos la función más adecuada de cada generación.
  • Imprima su solución de trabajo probada para 0 <i <10000.
  • ¡Ser creativo!

No haga:

  • Indique a su programa la solución, ¡utilice todas las opciones de idioma!
  • Lanzar errores a la consola.
  • Use cualquier entrada externa. Puede escribir y guardar en archivos creados por su programa. Sin internet.

¡La solución válida con más votos a favor gana!

reggaemuffin
fuente
¿ no librariesPermitido significa que no hay libc?
mniip
¡He eliminado el no librariesque sería para imo complejo, para que los votantes puedan decidir si se usan muchas bibliotecas!
reggaemuffin
77
+1 Pregunta difícil e interesante. Necesitará algunas horas para producir una respuesta. Lamentablemente, no espere obtener más de 2 o 3 respuestas.
Victor Stafusa
se pregunta ¿Cuál es la diferencia entre esto y una función recursiva? No puedo entenderlo, ya que no puedo visualizar el escenario se siente retrasado xD
Teun Pronk
1
"¡Por favor usa todas tus opciones de idioma!" parece ser una solicitud explícita de arriesgarse a que el programa elimine archivos importantes.
Peter Taylor

Respuestas:

3

C#

Solución de ensamblaje casi completamente aleatoria y cruda. En cuanto a C # y casi cualquier otra plataforma, este es el nivel más bajo posible. Afortunadamente, C # le permite definir métodos durante el tiempo de ejecución en IL (IL es lenguaje intermedio, el código de bytes de .NET, similar al ensamblado). La única limitación de este código es que elegí algunos códigos de operación (de cientos) con una distribución arbitraria que sería necesaria para la solución perfecta. Si permitimos todos los códigos de operación, las posibilidades de que un programa funcione sea escasa o nula, por lo que esto es necesario (como puede imaginar, hay muchas maneras en que las instrucciones de ensamblaje aleatorio pueden fallar, pero afortunadamente, no derriban todo el programa en la red). Además del rango de posibles códigos de operación, es completamente aleatorio cortar y cortar en cubos los códigos de operación IL sin ningún tipo de insinuación.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Reflection.Emit;
using System.Diagnostics;
using System.Threading;

namespace codegolf
{
    class Program
    {
        // decompile this into IL to find out the opcodes needed for the perfect algo
        static int digitsumbest(int i)
        {
            var ret = 0;
            while (i > 0)
            {
                ret += i % 10;
                i /= 10;
            }
            return ret;
        }

        delegate int digitsumdelegate(int num);

        static Thread bgthread;

        // actually runs the generated code for one index
        // it is invoked in a background thread, which we save so that it can be aborted in case of an infinite loop
        static int run(digitsumdelegate del, int num)
        {
            bgthread = Thread.CurrentThread;
            try
            {
                return del(num);
            }
            catch (ThreadAbortException)
            {
                bgthread = null;
                throw;
            }
        }

        // evaluates a generated code for some inputs and calculates an error level
        // also supports a full run with logging
        static long evaluate(digitsumdelegate del, TextWriter sw)
        {
            var error = 0L;

            List<int> numbers;
            if (sw == null) // quick evaluation
                numbers = Enumerable.Range(1, 30).Concat(Enumerable.Range(1, 70).Select(x => 5000 + x * 31)).ToList();
            else // full run
                numbers = Enumerable.Range(1, 9999).ToList();

            foreach (var num in numbers)
            {
                try
                {
                    Func<digitsumdelegate, int, int> f = run;
                    bgthread = null;
                    var iar = f.BeginInvoke(del, num, null, null);
                    if (!iar.AsyncWaitHandle.WaitOne(10))
                    {
                        bgthread.Abort();
                        while (bgthread != null) ;
                        throw new Exception("timeout");
                    }
                    var result = f.EndInvoke(iar);
                    if (sw != null)
                        sw.WriteLine("{0};{1};{2};", num, digitsumbest(num), result);
                    var diff = result == 0 ? 15 : (result - digitsumbest(num));
                    if (diff > 50 || diff < -50)
                        diff = 50;
                    error += diff * diff;
                }
                catch (InvalidProgramException)
                {
                    // invalid IL code, happens a lot, so let's make a shortcut
                    if (sw != null)
                        sw.WriteLine("invalid program");
                    return numbers.Count * (50 * 50) + 1;
                }
                catch (Exception ex)
                {
                    if (sw != null)
                        sw.WriteLine("{0};{1};;{2}", num, digitsumbest(num), ex.Message);
                    error += 50 * 50;
                }
            }
            return error;
        }

        // generates code from the given byte array
        static digitsumdelegate emit(byte[] ops)
        {
            var dm = new DynamicMethod("w", typeof(int), new[] { typeof(int) });
            var ilg = dm.GetILGenerator();
            var loc = ilg.DeclareLocal(typeof(int));

            // to support jumping anywhere, we will assign a label to every single opcode
            var labels = Enumerable.Range(0, ops.Length).Select(x => ilg.DefineLabel()).ToArray();

            for (var i = 0; i < ops.Length; i++)
            {
                ilg.MarkLabel(labels[i]);

                // 3 types of jumps with 23 distribution each, 11 types of other opcodes with 17 distribution each = all 256 possibilities
                // the opcodes were chosen based on the hand-coded working solution
                var c = ops[i];
                if (c < 23)
                    ilg.Emit(OpCodes.Br_S, labels[(i + 1 + c) % labels.Length]);
                else if (c < 46)
                    ilg.Emit(OpCodes.Bgt_S, labels[(i + 1 + c - 23) % labels.Length]);
                else if (c < 69)
                    ilg.Emit(OpCodes.Bge_S, labels[(i + 1 + c - 46) % labels.Length]);
                else if (c < 86)
                    ilg.Emit(OpCodes.Ldc_I4, c - 70); // stack: +1
                else if (c < 103)
                    ilg.Emit(OpCodes.Dup); // stack: +1
                else if (c < 120)
                    ilg.Emit(OpCodes.Ldarg_0); // stack: +1
                else if (c < 137)
                    ilg.Emit(OpCodes.Starg_S, 0); // stack: -1
                else if (c < 154)
                    ilg.Emit(OpCodes.Ldloc, loc); // stack: +1
                else if (c < 171)
                    ilg.Emit(OpCodes.Stloc, loc); // stack: -1
                else if (c < 188)
                    ilg.Emit(OpCodes.Mul); // stack: -1
                else if (c < 205)
                    ilg.Emit(OpCodes.Div); // stack: -1
                else if (c < 222)
                    ilg.Emit(OpCodes.Rem); // stack: -1
                else if (c < 239)
                    ilg.Emit(OpCodes.Add); // stack: -1
                else
                    ilg.Emit(OpCodes.Sub); // stack: -1
            }

            ilg.Emit(OpCodes.Ret);
            return (digitsumdelegate)dm.CreateDelegate(typeof(digitsumdelegate));
        }

        static void Main(string[] args)
        {
            System.Diagnostics.Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.Idle;

            var rnd = new Random();

            // the first list is just 10 small random ones
            var best = new List<byte[]>();
            for (var i = 0; i < 10; i++)
            {
                var initial = new byte[5];
                for (var j = 0; j < initial.Length; j++)
                    initial[j] = (byte)rnd.Next(256);
                best.Add(initial);
            }

            // load the best result from the previous run, if it exists
            if (File.Exists("best.txt"))
                best[0] = File.ReadAllLines("best.txt").Select(x => byte.Parse(x)).ToArray();

            var stop = false;

            // handle nice stopping with ctrl-c
            Console.CancelKeyPress += (s, e) =>
            {
                stop = true;
                e.Cancel = true;
            };

            while (!stop)
            {
                var candidates = new List<byte[]>();

                // leave the 10 best arrays, plus generate 9 consecutive mutations for each of them = 100 candidates
                for (var i = 0; i < 10; i++)
                {
                    var s = best[i];
                    candidates.Add(s);
                    for (var j = 0; j < 9; j++)
                    {
                        // the optimal solution is about 20 opcodes, we keep the program length between 15 and 40
                        switch (rnd.Next(s.Length >= 40 ? 2 : 0, s.Length <= 15 ? 3 : 5))
                        {
                            case 0: // insert
                            case 1:
                                var c = new byte[s.Length + 1];
                                var idx = rnd.Next(0, s.Length);
                                Array.Copy(s, 0, c, 0, idx);
                                c[idx] = (byte)rnd.Next(256);
                                Array.Copy(s, idx, c, idx + 1, s.Length - idx);
                                candidates.Add(c);
                                s = c;
                                break;
                            case 2: // change
                                c = (byte[])s.Clone();
                                idx = rnd.Next(0, s.Length);
                                c[idx] = (byte)rnd.Next(256);
                                candidates.Add(c);
                                s = c;
                                break;
                            case 3: // remove
                            case 4: // remove
                                c = new byte[s.Length - 1];
                                idx = rnd.Next(0, s.Length);
                                Array.Copy(s, 0, c, 0, idx);
                                Array.Copy(s, idx + 1, c, idx, s.Length - idx - 1);
                                candidates.Add(c);
                                s = c;
                                break;
                        }
                    }
                }

                // score the candidates and select the best 10
                var scores = Enumerable.Range(0, 100).ToDictionary(i => i, i => evaluate(emit(candidates[i]), null));
                var bestidxes = scores.OrderBy(x => x.Value).Take(10).Select(x => x.Key).ToList();
                Console.WriteLine("best score so far: {0}", scores[bestidxes[0]]);
                best = bestidxes.Select(i => candidates[i]).ToList();
            }

            // output the code of the best solution
            using (var sw = new StreamWriter("best.txt"))
            {
                foreach (var b in best[0])
                    sw.WriteLine(b);
            }

            // create a CSV file with the best solution
            using (var sw = new StreamWriter("best.csv"))
            {
                sw.WriteLine("index;actual;generated;error");
                evaluate(emit(best[0]), sw);
            }
        }
    }
}

Lo siento, no tengo resultados hasta ahora porque incluso con las pruebas para 1..99 (en lugar de 1..9999) es bastante lento y estoy demasiado cansado. Nos pondremos en contacto contigo mañana.

EDITAR: Terminé el programa y lo modifiqué mucho. Ahora, si presiona CTRL-C, finalizará la ejecución actual y mostrará los resultados en archivos. Actualmente, las únicas soluciones viables que produce son programas que siempre devuelven un número constante. Estoy empezando a pensar que las posibilidades de un programa de trabajo más avanzado son astronómicamente pequeñas. De todos modos lo mantendré funcionando por algún tiempo.

EDITAR: Sigo modificando el algoritmo, es un juguete perfecto para un geek como yo. Una vez vi un programa generado que realmente hacía algunos cálculos aleatorios y no siempre devolvía un número constante. Sería increíble ejecutarlo en unos pocos millones de CPU a la vez :). Lo seguirá ejecutando.

EDITAR: Aquí está el resultado de algunas matemáticas completamente al azar. Salta y permanece en 17 para el resto de los índices. No se volverá consciente en el corto plazo.

EDITAR: Se está volviendo más complicado. Por supuesto, como era de esperar, no se parece en nada al algoritmo digitsum adecuado, pero se está esforzando mucho. ¡Mira, un programa de ensamblaje generado por computadora!

fejesjoco
fuente
¡Se ve muy bien! ¡Veré tu código mañana!
reggaemuffin
En realidad probé un enfoque similar, y también estoy luchando duro con una buena función de evaluación. También me quedo atascado en máximos locales (atascado en soluciones, que devuelven correcto para 1..19, usando operaciones modulu sofisticadas). ¡De todos modos! PD: para salir de un máximo local, intentaré introducir mutaciones radicales ocasionalmente, y dejar que se desarrollen (en un universo separado, tal vez) por un tiempo para que no sean derribados inmediatamente por los demás ... ( algo así como América del Sur a la deriva de África y desarrollando diferentes especies ;-)
blabla999
3

C#

Puede que esto no sea completamente lo que imaginabas, pero es lo mejor que puedo hacer en este momento. (Al menos con C # y CodeDom).

Entonces, cómo funciona:

  1. Calcula la base de dígitos 2 (la base no se especificó en la declaración)
  2. Intenta generar una expresión con muchos términos similares ((i & v1) >> v2). Estos términos serán los genes que mutarán a lo largo de la carrera.
  3. La función de aptitud simplemente compara los valores con una matriz precalculada y usa la suma del valor absoluto de las diferencias. Esto significa que un valor 0 significa que hemos llegado a la solución, y cuanto menor sea el valor, mejor será la solución.

El código:

using System;
using System.CodeDom;
using System.CodeDom.Compiler;
using Microsoft.CSharp;
using System.IO;
using System.Reflection;
using System.Collections.Generic;
using System.Linq;

namespace Evol
{
    class MainClass
    {
        const int BASE = 2;
        static int[] correctValues;
        static List<Evolution> values = new List<Evolution>();

        public static CodeCompileUnit generateCompileUnit(CodeStatementCollection statements) {
            CodeCompileUnit compileUnit = new CodeCompileUnit();
            CodeNamespace samples = new CodeNamespace("CodeGolf");
            compileUnit.Namespaces.Add(samples);
            samples.Imports.Add(new CodeNamespaceImport("System"));
            CodeTypeDeclaration digitSumClass = new CodeTypeDeclaration("DigitSum");
            samples.Types.Add(digitSumClass);
            CodeMemberMethod method = new CodeMemberMethod();
            method.Name = "digitsum";
            method.Attributes = MemberAttributes.Public | MemberAttributes.Static;
            method.ReturnType = new CodeTypeReference (typeof(int));
            method.Parameters.Add (new CodeParameterDeclarationExpression (typeof(int), "i"));
            method.Statements.AddRange (statements);
            digitSumClass.Members.Add(method);
            return compileUnit;
        }

        public static long CompileAndInvoke(CodeStatementCollection statements, bool printCode) {
            CompilerParameters cp = new CompilerParameters();
            cp.ReferencedAssemblies.Add( "System.dll" );
            cp.GenerateInMemory = true;
            CodeGeneratorOptions cgo = new CodeGeneratorOptions ();
            CodeDomProvider cpd = new CSharpCodeProvider ();
            CodeCompileUnit cu = generateCompileUnit (statements);
            StringWriter sw = new StringWriter();
            cpd.GenerateCodeFromCompileUnit(cu, sw, cgo);
            if (printCode) {
                System.Console.WriteLine (sw.ToString ());
            }

            var result = cpd.CompileAssemblyFromDom (cp, cu);

            if (result.Errors.Count != 0) {
                return -1;
            } else {
                var assembly = result.CompiledAssembly;
                var type = assembly.GetType ("CodeGolf.DigitSum");
                var method = type.GetMethod ("digitsum");
                long fitness = CalcFitness (method);
                return fitness;
            }
        }

        public static long CalcFitness(MethodInfo method) {
            long result = 0;
            for (int i = 0; i < correctValues.Length; i++) {
                int r = (int)method.Invoke (null, new Object[] { i });
                result += Math.Abs (r - correctValues[i]);
            }
            return result;
        }

        public static CodeStatementCollection generateCodeDomFromString (Term[] terms) {
            CodeStatementCollection statements = new CodeStatementCollection ();
            CodeExpression expression = null;
            foreach (Term term in terms) {
                CodeExpression inner = new CodeArgumentReferenceExpression ("i");
                if (term.and.HasValue) {
                    inner = new CodeBinaryOperatorExpression (inner, CodeBinaryOperatorType.BitwiseAnd, new CodePrimitiveExpression(term.and.Value));
                }
                if (term.shift.HasValue) {
                    inner = new CodeBinaryOperatorExpression (inner, CodeBinaryOperatorType.Divide, new CodePrimitiveExpression(Math.Pow (2, term.shift.Value)));
                }
                if (expression == null) {
                    expression = inner;
                } else {
                    expression = new CodeBinaryOperatorExpression (expression, CodeBinaryOperatorType.Add, inner);
                }
            }
            statements.Add (new CodeMethodReturnStatement (expression));
            return statements;
        }


        public static void Main (string[] args)
        {
            correctValues = new int[10001];
            for (int i = 0; i < correctValues.Length; i++) {
                int result = 0;
                int num = i;
                while (num != 0) {
                    result += num % BASE;
                    num /= BASE;
                }
                correctValues [i] = result;
            }
            values.Add (new Evolution (new Term[] { new Term (null, null) }));
            Random rnd = new Random ();
            while (true) {
                // run old generation
                foreach (var val in values) {
                    CodeStatementCollection stat = generateCodeDomFromString (val.term);
                    long fitness = CompileAndInvoke (stat, false);
                    val.score = fitness;
                    System.Console.WriteLine ("Fitness: {0}", fitness);
                }
                Evolution best = values.Aggregate ((i1, i2) => i1.score < i2.score ? i1 : i2);
                CodeStatementCollection bestcoll = generateCodeDomFromString (best.term);
                CompileAndInvoke (bestcoll, true);
                System.Console.WriteLine ("Best fitness for this run: {0}", best.score);

                if (best.score == 0)
                    break;

                // generate new generation
                List<Evolution> top = values.OrderBy (i => i.score).Take (3).ToList();
                values = new List<Evolution> ();
                foreach (var e in top) {
                    values.Add (e);
                    if (e.term.Length < 16) {
                        Term[] newTerm = new Term[e.term.Length + 1];
                        for (int i = 0; i < e.term.Length; i++) {
                            newTerm [i] = e.term [i];
                        }
                        int rrr = rnd.Next (0, 17);
                        newTerm [e.term.Length] = new Term ((int)Math.Pow(2,rrr), rrr);
                        values.Add (new Evolution (newTerm));
                    }
                    {
                        int r = rnd.Next (0, e.term.Length);
                        Term[] newTerm = (Term[])e.term.Clone ();
                        int rrr = rnd.Next (0, 17);
                        newTerm [r] = new Term ((int)Math.Pow(2,rrr), rrr);
                        values.Add (new Evolution (newTerm));
                    }
                }
            }
        }

        public struct Term {
            public int? and;
            public int? shift;

            public Term(int? and, int? shift) {
                if (and!=0) {
                    this.and = and;
                } else this.and = null;
                if (shift!=0) {
                    this.shift = shift;
                } else this.shift=null;
            }
        }

        public class Evolution {
            public Term[] term;
            public long score;

            public Evolution(Term[] term) {
                this.term = term;
            }
        }
    }
}

Probado en OSX con el compilador Mono C # versión 3.2.6.0.

En cada iteración imprime el valor de aptitud del cálculo actual. Al final, imprimirá la mejor solución junto con su aptitud. El ciclo se ejecutará hasta que uno de los resultados tenga un valor de aptitud de 0.

Asi es como empieza:

// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return i;
        }
    }
}

Best fitness for this run: 49940387

Y después de un tiempo (toma alrededor de 30 minutos), así es como termina (mostrando la última y casi la última iteración):

// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return ((((((((((((((((i & 4096) / 4096) + ((i & 16) / 16)) + ((i & 32) / 32)) + ((i & 128) / 128)) + ((i & 65536) / 65536)) + ((i & 1024) / 1024)) + ((i & 8) / 8)) + ((i & 2) / 2)) + ((i & 512) / 512)) + ((i & 4) / 4)) + (i & 1)) + ((i & 256) / 256)) + ((i & 128) / 128)) + ((i & 8192) / 8192)) + ((i & 2048) / 2048));
        }
    }
}

Best fitness for this run: 4992
Fitness: 4992
Fitness: 7040
Fitness: 4993
Fitness: 4992
Fitness: 0
Fitness: 4992
Fitness: 4992
Fitness: 7496
// ------------------------------------------------------------------------------
//  <autogenerated>
//      This code was generated by a tool.
//      Mono Runtime Version: 4.0.30319.17020
// 
//      Changes to this file may cause incorrect behavior and will be lost if 
//      the code is regenerated.
//  </autogenerated>
// ------------------------------------------------------------------------------

namespace CodeGolf {
    using System;


    public class DigitSum {

        public static int digitsum(int i) {
            return (((((((((((((((((i & 4096) / 4096) + ((i & 16) / 16)) + ((i & 32) / 32)) + ((i & 64) / 64)) + ((i & 32768) / 32768)) + ((i & 1024) / 1024)) + ((i & 8) / 8)) + ((i & 2) / 2)) + ((i & 512) / 512)) + ((i & 4) / 4)) + (i & 1)) + ((i & 256) / 256)) + ((i & 128) / 128)) + ((i & 8192) / 8192)) + ((i & 2048) / 2048)) + ((i & 32768) / 32768));
        }
    }
}

Best fitness for this run: 0

Notas:

  1. CodeDOM no admite el operador de desplazamiento a la izquierda, por lo que en lugar de a >> busara / 2^b
  2. La iteración inicial es solo la return i;requerida por el problema.
  3. En las primeras iteraciones se da prioridad a la adición de nuevos términos (genes) a la suma. Más tarde, hay más prioridad en el cambio de valores (mutación) en términos aleatorios.
  4. Estoy generando términos que parecen en i & a >> alugar de i & a >> b, ya que en el último caso la evolución fue simplemente demasiado lenta para ser práctica.
  5. Esta es también la razón por la cual la solución se limita a encontrar una respuesta en el formulario return (i&a>>b)+(i&c>>d)+..., ya que cualquier otro tipo (como tratar de generar un código "adecuado", con bucles, asignaciones, verificaciones de condición, etc.) simplemente convergería demasiado lentamente. También de esta manera es muy fácil definir los genes (cada uno de los términos), y es muy fácil mutarlos.
  6. Esta es también la razón por la que estoy agregando los dígitos en la base 2 (la base no se especificó en la declaración del problema, por lo que considero que está bien). Una solución de base 10 hubiera sido simplemente lenta, y también habría sido muy difícil definir los genes reales. Agregar un bucle también significaría que debe administrar el código en ejecución y encontrar una posible forma de eliminarlo, antes de que ingrese en un bucle potencialmente infinito.
  7. Los genes solo están mutados, no hay cruce en esta solución. No sé si agregar eso aceleraría el proceso de evolución o no.
  8. La solución solo se prueba para números 0..10000(si marca la solución encontrada, puede ver que no funcionará para números mayores que 16384)
  9. Todo el proceso de evolución se puede comprobar en este punto.
SztupY
fuente
3

Javascript

Bueno, obtuve un problema de precisión de punto flotante con mi respuesta, que probablemente se puede resolver usando una biblioteca BigDecimal, cuando los números de entrada son mayores que 55.
Sí, eso está lejos de ser 10000así que no espero ganar, pero sigue siendo un método interesante basado en este tema .
Calcula una [interpolación polinómica] ( http://en.wikipedia.org/wiki/Polynomial_interpolation ) basada en un conjunto de puntos, por lo que solo utiliza multiplicación, división y suma, sin módulos ni operadores bit a bit.

//used to compute real values
function correct(i) {
  var s = i.toString();
  var o=0;
  for (var i=0; i<s.length; i++) {
    o+=parseInt(s[i]);
  }
  return o;
}

function digitsum(i){return i}
//can be replaced by anything like :
//function digitsum(i){return (Math.sin(i*i)+2*Math.sqrt(i)))}

for (var j=0; j<60; j++) {
  var p = correct(j+1)-digitsum(j+1);
  if (p != 0) {
    var g='Math.round(1';
    for (var k=0; k<j+1; k++) {
      g+='*((i-'+k+')/'+(j+1-k)+')';
    }
    g+=')';
    eval(digitsum.toString().replace(/{return (.*)}/, function (m,v) {
      return "{return "+v+"+"+p+"*"+g+"}";
    }));
  }
}

console.log(digitsum);

Función de salida:

function digitsum(i){return i+-9*Math.round(1*((i-0)/10)*((i-1)/9)*((i-2)/8)*((i-3)/7)*((i-4)/6)*((i-5)/5)*((i-6)/4)*((i-7)/3)*((i-8)/2)*((i-9)/1))+90*Math.round(1*((i-0)/11)*((i-1)/10)*((i-2)/9)*((i-3)/8)*((i-4)/7)*((i-5)/6)*((i-6)/5)*((i-7)/4)*((i-8)/3)*((i-9)/2)*((i-10)/1))+-495*Math.round(1*((i-0)/12)*((i-1)/11)*((i-2)/10)*((i-3)/9)*((i-4)/8)*((i-5)/7)*((i-6)/6)*((i-7)/5)*((i-8)/4)*((i-9)/3)*((i-10)/2)*((i-11)/1))+1980*Math.round(1*((i-0)/13)*((i-1)/12)*((i-2)/11)*((i-3)/10)*((i-4)/9)*((i-5)/8)*((i-6)/7)*((i-7)/6)*((i-8)/5)*((i-9)/4)*((i-10)/3)*((i-11)/2)*((i-12)/1))+-6435*Math.round(1*((i-0)/14)*((i-1)/13)*((i-2)/12)*((i-3)/11)*((i-4)/10)*((i-5)/9)*((i-6)/8)*((i-7)/7)*((i-8)/6)*((i-9)/5)*((i-10)/4)*((i-11)/3)*((i-12)/2)*((i-13)/1))+18018*Math.round(1*((i-0)/15)*((i-1)/14)*((i-2)/13)*((i-3)/12)*((i-4)/11)*((i-5)/10)*((i-6)/9)*((i-7)/8)*((i-8)/7)*((i-9)/6)*((i-10)/5)*((i-11)/4)*((i-12)/3)*((i-13)/2)*((i-14)/1))+-45045*Math.round(1*((i-0)/16)*((i-1)/15)*((i-2)/14)*((i-3)/13)*((i-4)/12)*((i-5)/11)*((i-6)/10)*((i-7)/9)*((i-8)/8)*((i-9)/7)*((i-10)/6)*((i-11)/5)*((i-12)/4)*((i-13)/3)*((i-14)/2)*((i-15)/1))+102960*Math.round(1*((i-0)/17)*((i-1)/16)*((i-2)/15)*((i-3)/14)*((i-4)/13)*((i-5)/12)*((i-6)/11)*((i-7)/10)*((i-8)/9)*((i-9)/8)*((i-10)/7)*((i-11)/6)*((i-12)/5)*((i-13)/4)*((i-14)/3)*((i-15)/2)*((i-16)/1))+-218790*Math.round(1*((i-0)/18)*((i-1)/17)*((i-2)/16)*((i-3)/15)*((i-4)/14)*((i-5)/13)*((i-6)/12)*((i-7)/11)*((i-8)/10)*((i-9)/9)*((i-10)/8)*((i-11)/7)*((i-12)/6)*((i-13)/5)*((i-14)/4)*((i-15)/3)*((i-16)/2)*((i-17)/1))+437580*Math.round(1*((i-0)/19)*((i-1)/18)*((i-2)/17)*((i-3)/16)*((i-4)/15)*((i-5)/14)*((i-6)/13)*((i-7)/12)*((i-8)/11)*((i-9)/10)*((i-10)/9)*((i-11)/8)*((i-12)/7)*((i-13)/6)*((i-14)/5)*((i-15)/4)*((i-16)/3)*((i-17)/2)*((i-18)/1))+-831411*Math.round(1*((i-0)/20)*((i-1)/19)*((i-2)/18)*((i-3)/17)*((i-4)/16)*((i-5)/15)*((i-6)/14)*((i-7)/13)*((i-8)/12)*((i-9)/11)*((i-10)/10)*((i-11)/9)*((i-12)/8)*((i-13)/7)*((i-14)/6)*((i-15)/5)*((i-16)/4)*((i-17)/3)*((i-18)/2)*((i-19)/1))+1511820*Math.round(1*((i-0)/21)*((i-1)/20)*((i-2)/19)*((i-3)/18)*((i-4)/17)*((i-5)/16)*((i-6)/15)*((i-7)/14)*((i-8)/13)*((i-9)/12)*((i-10)/11)*((i-11)/10)*((i-12)/9)*((i-13)/8)*((i-14)/7)*((i-15)/6)*((i-16)/5)*((i-17)/4)*((i-18)/3)*((i-19)/2)*((i-20)/1))+-2647260*Math.round(1*((i-0)/22)*((i-1)/21)*((i-2)/20)*((i-3)/19)*((i-4)/18)*((i-5)/17)*((i-6)/16)*((i-7)/15)*((i-8)/14)*((i-9)/13)*((i-10)/12)*((i-11)/11)*((i-12)/10)*((i-13)/9)*((i-14)/8)*((i-15)/7)*((i-16)/6)*((i-17)/5)*((i-18)/4)*((i-19)/3)*((i-20)/2)*((i-21)/1))+4490640*Math.round(1*((i-0)/23)*((i-1)/22)*((i-2)/21)*((i-3)/20)*((i-4)/19)*((i-5)/18)*((i-6)/17)*((i-7)/16)*((i-8)/15)*((i-9)/14)*((i-10)/13)*((i-11)/12)*((i-12)/11)*((i-13)/10)*((i-14)/9)*((i-15)/8)*((i-16)/7)*((i-17)/6)*((i-18)/5)*((i-19)/4)*((i-20)/3)*((i-21)/2)*((i-22)/1))+-7434405*Math.round(1*((i-0)/24)*((i-1)/23)*((i-2)/22)*((i-3)/21)*((i-4)/20)*((i-5)/19)*((i-6)/18)*((i-7)/17)*((i-8)/16)*((i-9)/15)*((i-10)/14)*((i-11)/13)*((i-12)/12)*((i-13)/11)*((i-14)/10)*((i-15)/9)*((i-16)/8)*((i-17)/7)*((i-18)/6)*((i-19)/5)*((i-20)/4)*((i-21)/3)*((i-22)/2)*((i-23)/1))+12150072*Math.round(1*((i-0)/25)*((i-1)/24)*((i-2)/23)*((i-3)/22)*((i-4)/21)*((i-5)/20)*((i-6)/19)*((i-7)/18)*((i-8)/17)*((i-9)/16)*((i-10)/15)*((i-11)/14)*((i-12)/13)*((i-13)/12)*((i-14)/11)*((i-15)/10)*((i-16)/9)*((i-17)/8)*((i-18)/7)*((i-19)/6)*((i-20)/5)*((i-21)/4)*((i-22)/3)*((i-23)/2)*((i-24)/1))+-19980675*Math.round(1*((i-0)/26)*((i-1)/25)*((i-2)/24)*((i-3)/23)*((i-4)/22)*((i-5)/21)*((i-6)/20)*((i-7)/19)*((i-8)/18)*((i-9)/17)*((i-10)/16)*((i-11)/15)*((i-12)/14)*((i-13)/13)*((i-14)/12)*((i-15)/11)*((i-16)/10)*((i-17)/9)*((i-18)/8)*((i-19)/7)*((i-20)/6)*((i-21)/5)*((i-22)/4)*((i-23)/3)*((i-24)/2)*((i-25)/1))+34041150*Math.round(1*((i-0)/27)*((i-1)/26)*((i-2)/25)*((i-3)/24)*((i-4)/23)*((i-5)/22)*((i-6)/21)*((i-7)/20)*((i-8)/19)*((i-9)/18)*((i-10)/17)*((i-11)/16)*((i-12)/15)*((i-13)/14)*((i-14)/13)*((i-15)/12)*((i-16)/11)*((i-17)/10)*((i-18)/9)*((i-19)/8)*((i-20)/7)*((i-21)/6)*((i-22)/5)*((i-23)/4)*((i-24)/3)*((i-25)/2)*((i-26)/1))+-62162100*Math.round(1*((i-0)/28)*((i-1)/27)*((i-2)/26)*((i-3)/25)*((i-4)/24)*((i-5)/23)*((i-6)/22)*((i-7)/21)*((i-8)/20)*((i-9)/19)*((i-10)/18)*((i-11)/17)*((i-12)/16)*((i-13)/15)*((i-14)/14)*((i-15)/13)*((i-16)/12)*((i-17)/11)*((i-18)/10)*((i-19)/9)*((i-20)/8)*((i-21)/7)*((i-22)/6)*((i-23)/5)*((i-24)/4)*((i-25)/3)*((i-26)/2)*((i-27)/1))+124324200*Math.round(1*((i-0)/29)*((i-1)/28)*((i-2)/27)*((i-3)/26)*((i-4)/25)*((i-5)/24)*((i-6)/23)*((i-7)/22)*((i-8)/21)*((i-9)/20)*((i-10)/19)*((i-11)/18)*((i-12)/17)*((i-13)/16)*((i-14)/15)*((i-15)/14)*((i-16)/13)*((i-17)/12)*((i-18)/11)*((i-19)/10)*((i-20)/9)*((i-21)/8)*((i-22)/7)*((i-23)/6)*((i-24)/5)*((i-25)/4)*((i-26)/3)*((i-27)/2)*((i-28)/1))+-270405144*Math.round(1*((i-0)/30)*((i-1)/29)*((i-2)/28)*((i-3)/27)*((i-4)/26)*((i-5)/25)*((i-6)/24)*((i-7)/23)*((i-8)/22)*((i-9)/21)*((i-10)/20)*((i-11)/19)*((i-12)/18)*((i-13)/17)*((i-14)/16)*((i-15)/15)*((i-16)/14)*((i-17)/13)*((i-18)/12)*((i-19)/11)*((i-20)/10)*((i-21)/9)*((i-22)/8)*((i-23)/7)*((i-24)/6)*((i-25)/5)*((i-26)/4)*((i-27)/3)*((i-28)/2)*((i-29)/1))+620410320*Math.round(1*((i-0)/31)*((i-1)/30)*((i-2)/29)*((i-3)/28)*((i-4)/27)*((i-5)/26)*((i-6)/25)*((i-7)/24)*((i-8)/23)*((i-9)/22)*((i-10)/21)*((i-11)/20)*((i-12)/19)*((i-13)/18)*((i-14)/17)*((i-15)/16)*((i-16)/15)*((i-17)/14)*((i-18)/13)*((i-19)/12)*((i-20)/11)*((i-21)/10)*((i-22)/9)*((i-23)/8)*((i-24)/7)*((i-25)/6)*((i-26)/5)*((i-27)/4)*((i-28)/3)*((i-29)/2)*((i-30)/1))+-1451529585*Math.round(1*((i-0)/32)*((i-1)/31)*((i-2)/30)*((i-3)/29)*((i-4)/28)*((i-5)/27)*((i-6)/26)*((i-7)/25)*((i-8)/24)*((i-9)/23)*((i-10)/22)*((i-11)/21)*((i-12)/20)*((i-13)/19)*((i-14)/18)*((i-15)/17)*((i-16)/16)*((i-17)/15)*((i-18)/14)*((i-19)/13)*((i-20)/12)*((i-21)/11)*((i-22)/10)*((i-23)/9)*((i-24)/8)*((i-25)/7)*((i-26)/6)*((i-27)/5)*((i-28)/4)*((i-29)/3)*((i-30)/2)*((i-31)/1))+3378846240*Math.round(1*((i-0)/33)*((i-1)/32)*((i-2)/31)*((i-3)/30)*((i-4)/29)*((i-5)/28)*((i-6)/27)*((i-7)/26)*((i-8)/25)*((i-9)/24)*((i-10)/23)*((i-11)/22)*((i-12)/21)*((i-13)/20)*((i-14)/19)*((i-15)/18)*((i-16)/17)*((i-17)/16)*((i-18)/15)*((i-19)/14)*((i-20)/13)*((i-21)/12)*((i-22)/11)*((i-23)/10)*((i-24)/9)*((i-25)/8)*((i-26)/7)*((i-27)/6)*((i-28)/5)*((i-29)/4)*((i-30)/3)*((i-31)/2)*((i-32)/1))+-7716754980*Math.round(1*((i-0)/34)*((i-1)/33)*((i-2)/32)*((i-3)/31)*((i-4)/30)*((i-5)/29)*((i-6)/28)*((i-7)/27)*((i-8)/26)*((i-9)/25)*((i-10)/24)*((i-11)/23)*((i-12)/22)*((i-13)/21)*((i-14)/20)*((i-15)/19)*((i-16)/18)*((i-17)/17)*((i-18)/16)*((i-19)/15)*((i-20)/14)*((i-21)/13)*((i-22)/12)*((i-23)/11)*((i-24)/10)*((i-25)/9)*((i-26)/8)*((i-27)/7)*((i-28)/6)*((i-29)/5)*((i-30)/4)*((i-31)/3)*((i-32)/2)*((i-33)/1))+17178273288*Math.round(1*((i-0)/35)*((i-1)/34)*((i-2)/33)*((i-3)/32)*((i-4)/31)*((i-5)/30)*((i-6)/29)*((i-7)/28)*((i-8)/27)*((i-9)/26)*((i-10)/25)*((i-11)/24)*((i-12)/23)*((i-13)/22)*((i-14)/21)*((i-15)/20)*((i-16)/19)*((i-17)/18)*((i-18)/17)*((i-19)/16)*((i-20)/15)*((i-21)/14)*((i-22)/13)*((i-23)/12)*((i-24)/11)*((i-25)/10)*((i-26)/9)*((i-27)/8)*((i-28)/7)*((i-29)/6)*((i-30)/5)*((i-31)/4)*((i-32)/3)*((i-33)/2)*((i-34)/1))+-37189436130*Math.round(1*((i-0)/36)*((i-1)/35)*((i-2)/34)*((i-3)/33)*((i-4)/32)*((i-5)/31)*((i-6)/30)*((i-7)/29)*((i-8)/28)*((i-9)/27)*((i-10)/26)*((i-11)/25)*((i-12)/24)*((i-13)/23)*((i-14)/22)*((i-15)/21)*((i-16)/20)*((i-17)/19)*((i-18)/18)*((i-19)/17)*((i-20)/16)*((i-21)/15)*((i-22)/14)*((i-23)/13)*((i-24)/12)*((i-25)/11)*((i-26)/10)*((i-27)/9)*((i-28)/8)*((i-29)/7)*((i-30)/6)*((i-31)/5)*((i-32)/4)*((i-33)/3)*((i-34)/2)*((i-35)/1))+78299888041*Math.round(1*((i-0)/37)*((i-1)/36)*((i-2)/35)*((i-3)/34)*((i-4)/33)*((i-5)/32)*((i-6)/31)*((i-7)/30)*((i-8)/29)*((i-9)/28)*((i-10)/27)*((i-11)/26)*((i-12)/25)*((i-13)/24)*((i-14)/23)*((i-15)/22)*((i-16)/21)*((i-17)/20)*((i-18)/19)*((i-19)/18)*((i-20)/17)*((i-21)/16)*((i-22)/15)*((i-23)/14)*((i-24)/13)*((i-25)/12)*((i-26)/11)*((i-27)/10)*((i-28)/9)*((i-29)/8)*((i-30)/7)*((i-31)/6)*((i-32)/5)*((i-33)/4)*((i-34)/3)*((i-35)/2)*((i-36)/1))+-160520791904*Math.round(1*((i-0)/38)*((i-1)/37)*((i-2)/36)*((i-3)/35)*((i-4)/34)*((i-5)/33)*((i-6)/32)*((i-7)/31)*((i-8)/30)*((i-9)/29)*((i-10)/28)*((i-11)/27)*((i-12)/26)*((i-13)/25)*((i-14)/24)*((i-15)/23)*((i-16)/22)*((i-17)/21)*((i-18)/20)*((i-19)/19)*((i-20)/18)*((i-21)/17)*((i-22)/16)*((i-23)/15)*((i-24)/14)*((i-25)/13)*((i-26)/12)*((i-27)/11)*((i-28)/10)*((i-29)/9)*((i-30)/8)*((i-31)/7)*((i-32)/6)*((i-33)/5)*((i-34)/4)*((i-35)/3)*((i-36)/2)*((i-37)/1))+321041584713*Math.round(1*((i-0)/39)*((i-1)/38)*((i-2)/37)*((i-3)/36)*((i-4)/35)*((i-5)/34)*((i-6)/33)*((i-7)/32)*((i-8)/31)*((i-9)/30)*((i-10)/29)*((i-11)/28)*((i-12)/27)*((i-13)/26)*((i-14)/25)*((i-15)/24)*((i-16)/23)*((i-17)/22)*((i-18)/21)*((i-19)/20)*((i-20)/19)*((i-21)/18)*((i-22)/17)*((i-23)/16)*((i-24)/15)*((i-25)/14)*((i-26)/13)*((i-27)/12)*((i-28)/11)*((i-29)/10)*((i-30)/9)*((i-31)/8)*((i-32)/7)*((i-33)/6)*((i-34)/5)*((i-35)/4)*((i-36)/3)*((i-37)/2)*((i-38)/1))+-627938339760*Math.round(1*((i-0)/40)*((i-1)/39)*((i-2)/38)*((i-3)/37)*((i-4)/36)*((i-5)/35)*((i-6)/34)*((i-7)/33)*((i-8)/32)*((i-9)/31)*((i-10)/30)*((i-11)/29)*((i-12)/28)*((i-13)/27)*((i-14)/26)*((i-15)/25)*((i-16)/24)*((i-17)/23)*((i-18)/22)*((i-19)/21)*((i-20)/20)*((i-21)/19)*((i-22)/18)*((i-23)/17)*((i-24)/16)*((i-25)/15)*((i-26)/14)*((i-27)/13)*((i-28)/12)*((i-29)/11)*((i-30)/10)*((i-31)/9)*((i-32)/8)*((i-33)/7)*((i-34)/6)*((i-35)/5)*((i-36)/4)*((i-37)/3)*((i-38)/2)*((i-39)/1))+1204809019815*Math.round(1*((i-0)/41)*((i-1)/40)*((i-2)/39)*((i-3)/38)*((i-4)/37)*((i-5)/36)*((i-6)/35)*((i-7)/34)*((i-8)/33)*((i-9)/32)*((i-10)/31)*((i-11)/30)*((i-12)/29)*((i-13)/28)*((i-14)/27)*((i-15)/26)*((i-16)/25)*((i-17)/24)*((i-18)/23)*((i-19)/22)*((i-20)/21)*((i-21)/20)*((i-22)/19)*((i-23)/18)*((i-24)/17)*((i-25)/16)*((i-26)/15)*((i-27)/14)*((i-28)/13)*((i-29)/12)*((i-30)/11)*((i-31)/10)*((i-32)/9)*((i-33)/8)*((i-34)/7)*((i-35)/6)*((i-36)/5)*((i-37)/4)*((i-38)/3)*((i-39)/2)*((i-40)/1))+-2276206770520*Math.round(1*((i-0)/42)*((i-1)/41)*((i-2)/40)*((i-3)/39)*((i-4)/38)*((i-5)/37)*((i-6)/36)*((i-7)/35)*((i-8)/34)*((i-9)/33)*((i-10)/32)*((i-11)/31)*((i-12)/30)*((i-13)/29)*((i-14)/28)*((i-15)/27)*((i-16)/26)*((i-17)/25)*((i-18)/24)*((i-19)/23)*((i-20)/22)*((i-21)/21)*((i-22)/20)*((i-23)/19)*((i-24)/18)*((i-25)/17)*((i-26)/16)*((i-27)/15)*((i-28)/14)*((i-29)/13)*((i-30)/12)*((i-31)/11)*((i-32)/10)*((i-33)/9)*((i-34)/8)*((i-35)/7)*((i-36)/6)*((i-37)/5)*((i-38)/4)*((i-39)/3)*((i-40)/2)*((i-41)/1))+4254673762574*Math.round(1*((i-0)/43)*((i-1)/42)*((i-2)/41)*((i-3)/40)*((i-4)/39)*((i-5)/38)*((i-6)/37)*((i-7)/36)*((i-8)/35)*((i-9)/34)*((i-10)/33)*((i-11)/32)*((i-12)/31)*((i-13)/30)*((i-14)/29)*((i-15)/28)*((i-16)/27)*((i-17)/26)*((i-18)/25)*((i-19)/24)*((i-20)/23)*((i-21)/22)*((i-22)/21)*((i-23)/20)*((i-24)/19)*((i-25)/18)*((i-26)/17)*((i-27)/16)*((i-28)/15)*((i-29)/14)*((i-30)/13)*((i-31)/12)*((i-32)/11)*((i-33)/10)*((i-34)/9)*((i-35)/8)*((i-36)/7)*((i-37)/6)*((i-38)/5)*((i-39)/4)*((i-40)/3)*((i-41)/2)*((i-42)/1))+-7914840120452*Math.round(1*((i-0)/44)*((i-1)/43)*((i-2)/42)*((i-3)/41)*((i-4)/40)*((i-5)/39)*((i-6)/38)*((i-7)/37)*((i-8)/36)*((i-9)/35)*((i-10)/34)*((i-11)/33)*((i-12)/32)*((i-13)/31)*((i-14)/30)*((i-15)/29)*((i-16)/28)*((i-17)/27)*((i-18)/26)*((i-19)/25)*((i-20)/24)*((i-21)/23)*((i-22)/22)*((i-23)/21)*((i-24)/20)*((i-25)/19)*((i-26)/18)*((i-27)/17)*((i-28)/16)*((i-29)/15)*((i-30)/14)*((i-31)/13)*((i-32)/12)*((i-33)/11)*((i-34)/10)*((i-35)/9)*((i-36)/8)*((i-37)/7)*((i-38)/6)*((i-39)/5)*((i-40)/4)*((i-41)/3)*((i-42)/2)*((i-43)/1))+14755713366633*Math.round(1*((i-0)/45)*((i-1)/44)*((i-2)/43)*((i-3)/42)*((i-4)/41)*((i-5)/40)*((i-6)/39)*((i-7)/38)*((i-8)/37)*((i-9)/36)*((i-10)/35)*((i-11)/34)*((i-12)/33)*((i-13)/32)*((i-14)/31)*((i-15)/30)*((i-16)/29)*((i-17)/28)*((i-18)/27)*((i-19)/26)*((i-20)/25)*((i-21)/24)*((i-22)/23)*((i-23)/22)*((i-24)/21)*((i-25)/20)*((i-26)/19)*((i-27)/18)*((i-28)/17)*((i-29)/16)*((i-30)/15)*((i-31)/14)*((i-32)/13)*((i-33)/12)*((i-34)/11)*((i-35)/10)*((i-36)/9)*((i-37)/8)*((i-38)/7)*((i-39)/6)*((i-40)/5)*((i-41)/4)*((i-42)/3)*((i-43)/2)*((i-44)/1))+-27776520662160*Math.round(1*((i-0)/46)*((i-1)/45)*((i-2)/44)*((i-3)/43)*((i-4)/42)*((i-5)/41)*((i-6)/40)*((i-7)/39)*((i-8)/38)*((i-9)/37)*((i-10)/36)*((i-11)/35)*((i-12)/34)*((i-13)/33)*((i-14)/32)*((i-15)/31)*((i-16)/30)*((i-17)/29)*((i-18)/28)*((i-19)/27)*((i-20)/26)*((i-21)/25)*((i-22)/24)*((i-23)/23)*((i-24)/22)*((i-25)/21)*((i-26)/20)*((i-27)/19)*((i-28)/18)*((i-29)/17)*((i-30)/16)*((i-31)/15)*((i-32)/14)*((i-33)/13)*((i-34)/12)*((i-35)/11)*((i-36)/10)*((i-37)/9)*((i-38)/8)*((i-39)/7)*((i-40)/6)*((i-41)/5)*((i-42)/4)*((i-43)/3)*((i-44)/2)*((i-45)/1))+53164054207611*Math.round(1*((i-0)/47)*((i-1)/46)*((i-2)/45)*((i-3)/44)*((i-4)/43)*((i-5)/42)*((i-6)/41)*((i-7)/40)*((i-8)/39)*((i-9)/38)*((i-10)/37)*((i-11)/36)*((i-12)/35)*((i-13)/34)*((i-14)/33)*((i-15)/32)*((i-16)/31)*((i-17)/30)*((i-18)/29)*((i-19)/28)*((i-20)/27)*((i-21)/26)*((i-22)/25)*((i-23)/24)*((i-24)/23)*((i-25)/22)*((i-26)/21)*((i-27)/20)*((i-28)/19)*((i-29)/18)*((i-30)/17)*((i-31)/16)*((i-32)/15)*((i-33)/14)*((i-34)/13)*((i-35)/12)*((i-36)/11)*((i-37)/10)*((i-38)/9)*((i-39)/8)*((i-40)/7)*((i-41)/6)*((i-42)/5)*((i-43)/4)*((i-44)/3)*((i-45)/2)*((i-46)/1))+-103975831339140*Math.round(1*((i-0)/48)*((i-1)/47)*((i-2)/46)*((i-3)/45)*((i-4)/44)*((i-5)/43)*((i-6)/42)*((i-7)/41)*((i-8)/40)*((i-9)/39)*((i-10)/38)*((i-11)/37)*((i-12)/36)*((i-13)/35)*((i-14)/34)*((i-15)/33)*((i-16)/32)*((i-17)/31)*((i-18)/30)*((i-19)/29)*((i-20)/28)*((i-21)/27)*((i-22)/26)*((i-23)/25)*((i-24)/24)*((i-25)/23)*((i-26)/22)*((i-27)/21)*((i-28)/20)*((i-29)/19)*((i-30)/18)*((i-31)/17)*((i-32)/16)*((i-33)/15)*((i-34)/14)*((i-35)/13)*((i-36)/12)*((i-37)/11)*((i-38)/10)*((i-39)/9)*((i-40)/8)*((i-41)/7)*((i-42)/6)*((i-43)/5)*((i-44)/4)*((i-45)/3)*((i-46)/2)*((i-47)/1))+208138306632137*Math.round(1*((i-0)/49)*((i-1)/48)*((i-2)/47)*((i-3)/46)*((i-4)/45)*((i-5)/44)*((i-6)/43)*((i-7)/42)*((i-8)/41)*((i-9)/40)*((i-10)/39)*((i-11)/38)*((i-12)/37)*((i-13)/36)*((i-14)/35)*((i-15)/34)*((i-16)/33)*((i-17)/32)*((i-18)/31)*((i-19)/30)*((i-20)/29)*((i-21)/28)*((i-22)/27)*((i-23)/26)*((i-24)/25)*((i-25)/24)*((i-26)/23)*((i-27)/22)*((i-28)/21)*((i-29)/20)*((i-30)/19)*((i-31)/18)*((i-32)/17)*((i-33)/16)*((i-34)/15)*((i-35)/14)*((i-36)/13)*((i-37)/12)*((i-38)/11)*((i-39)/10)*((i-40)/9)*((i-41)/8)*((i-42)/7)*((i-43)/6)*((i-44)/5)*((i-45)/4)*((i-46)/3)*((i-47)/2)*((i-48)/1))+-425620349055645*Math.round(1*((i-0)/50)*((i-1)/49)*((i-2)/48)*((i-3)/47)*((i-4)/46)*((i-5)/45)*((i-6)/44)*((i-7)/43)*((i-8)/42)*((i-9)/41)*((i-10)/40)*((i-11)/39)*((i-12)/38)*((i-13)/37)*((i-14)/36)*((i-15)/35)*((i-16)/34)*((i-17)/33)*((i-18)/32)*((i-19)/31)*((i-20)/30)*((i-21)/29)*((i-22)/28)*((i-23)/27)*((i-24)/26)*((i-25)/25)*((i-26)/24)*((i-27)/23)*((i-28)/22)*((i-29)/21)*((i-30)/20)*((i-31)/19)*((i-32)/18)*((i-33)/17)*((i-34)/16)*((i-35)/15)*((i-36)/14)*((i-37)/13)*((i-38)/12)*((i-39)/11)*((i-40)/10)*((i-41)/9)*((i-42)/8)*((i-43)/7)*((i-44)/6)*((i-45)/5)*((i-46)/4)*((i-47)/3)*((i-48)/2)*((i-49)/1))+884722839970606*Math.round(1*((i-0)/51)*((i-1)/50)*((i-2)/49)*((i-3)/48)*((i-4)/47)*((i-5)/46)*((i-6)/45)*((i-7)/44)*((i-8)/43)*((i-9)/42)*((i-10)/41)*((i-11)/40)*((i-12)/39)*((i-13)/38)*((i-14)/37)*((i-15)/36)*((i-16)/35)*((i-17)/34)*((i-18)/33)*((i-19)/32)*((i-20)/31)*((i-21)/30)*((i-22)/29)*((i-23)/28)*((i-24)/27)*((i-25)/26)*((i-26)/25)*((i-27)/24)*((i-28)/23)*((i-29)/22)*((i-30)/21)*((i-31)/20)*((i-32)/19)*((i-33)/18)*((i-34)/17)*((i-35)/16)*((i-36)/15)*((i-37)/14)*((i-38)/13)*((i-39)/12)*((i-40)/11)*((i-41)/10)*((i-42)/9)*((i-43)/8)*((i-44)/7)*((i-45)/6)*((i-46)/5)*((i-47)/4)*((i-48)/3)*((i-49)/2)*((i-50)/1))+-1857183748827153*Math.round(1*((i-0)/52)*((i-1)/51)*((i-2)/50)*((i-3)/49)*((i-4)/48)*((i-5)/47)*((i-6)/46)*((i-7)/45)*((i-8)/44)*((i-9)/43)*((i-10)/42)*((i-11)/41)*((i-12)/40)*((i-13)/39)*((i-14)/38)*((i-15)/37)*((i-16)/36)*((i-17)/35)*((i-18)/34)*((i-19)/33)*((i-20)/32)*((i-21)/31)*((i-22)/30)*((i-23)/29)*((i-24)/28)*((i-25)/27)*((i-26)/26)*((i-27)/25)*((i-28)/24)*((i-29)/23)*((i-30)/22)*((i-31)/21)*((i-32)/20)*((i-33)/19)*((i-34)/18)*((i-35)/17)*((i-36)/16)*((i-37)/15)*((i-38)/14)*((i-39)/13)*((i-40)/12)*((i-41)/11)*((i-42)/10)*((i-43)/9)*((i-44)/8)*((i-45)/7)*((i-46)/6)*((i-47)/5)*((i-48)/4)*((i-49)/3)*((i-50)/2)*((i-51)/1))+3909404796652936*Math.round(1*((i-0)/53)*((i-1)/52)*((i-2)/51)*((i-3)/50)*((i-4)/49)*((i-5)/48)*((i-6)/47)*((i-7)/46)*((i-8)/45)*((i-9)/44)*((i-10)/43)*((i-11)/42)*((i-12)/41)*((i-13)/40)*((i-14)/39)*((i-15)/38)*((i-16)/37)*((i-17)/36)*((i-18)/35)*((i-19)/34)*((i-20)/33)*((i-21)/32)*((i-22)/31)*((i-23)/30)*((i-24)/29)*((i-25)/28)*((i-26)/27)*((i-27)/26)*((i-28)/25)*((i-29)/24)*((i-30)/23)*((i-31)/22)*((i-32)/21)*((i-33)/20)*((i-34)/19)*((i-35)/18)*((i-36)/17)*((i-37)/16)*((i-38)/15)*((i-39)/14)*((i-40)/13)*((i-41)/12)*((i-42)/11)*((i-43)/10)*((i-44)/9)*((i-45)/8)*((i-46)/7)*((i-47)/6)*((i-48)/5)*((i-49)/4)*((i-50)/3)*((i-51)/2)*((i-52)/1))+-8195615777370807*Math.round(1*((i-0)/54)*((i-1)/53)*((i-2)/52)*((i-3)/51)*((i-4)/50)*((i-5)/49)*((i-6)/48)*((i-7)/47)*((i-8)/46)*((i-9)/45)*((i-10)/44)*((i-11)/43)*((i-12)/42)*((i-13)/41)*((i-14)/40)*((i-15)/39)*((i-16)/38)*((i-17)/37)*((i-18)/36)*((i-19)/35)*((i-20)/34)*((i-21)/33)*((i-22)/32)*((i-23)/31)*((i-24)/30)*((i-25)/29)*((i-26)/28)*((i-27)/27)*((i-28)/26)*((i-29)/25)*((i-30)/24)*((i-31)/23)*((i-32)/22)*((i-33)/21)*((i-34)/20)*((i-35)/19)*((i-36)/18)*((i-37)/17)*((i-38)/16)*((i-39)/15)*((i-40)/14)*((i-41)/13)*((i-42)/12)*((i-43)/11)*((i-44)/10)*((i-45)/9)*((i-46)/8)*((i-47)/7)*((i-48)/6)*((i-49)/5)*((i-50)/4)*((i-51)/3)*((i-52)/2)*((i-53)/1))+16994979589974346*Math.round(1*((i-0)/55)*((i-1)/54)*((i-2)/53)*((i-3)/52)*((i-4)/51)*((i-5)/50)*((i-6)/49)*((i-7)/48)*((i-8)/47)*((i-9)/46)*((i-10)/45)*((i-11)/44)*((i-12)/43)*((i-13)/42)*((i-14)/41)*((i-15)/40)*((i-16)/39)*((i-17)/38)*((i-18)/37)*((i-19)/36)*((i-20)/35)*((i-21)/34)*((i-22)/33)*((i-23)/32)*((i-24)/31)*((i-25)/30)*((i-26)/29)*((i-27)/28)*((i-28)/27)*((i-29)/26)*((i-30)/25)*((i-31)/24)*((i-32)/23)*((i-33)/22)*((i-34)/21)*((i-35)/20)*((i-36)/19)*((i-37)/18)*((i-38)/17)*((i-39)/16)*((i-40)/15)*((i-41)/14)*((i-42)/13)*((i-43)/12)*((i-44)/11)*((i-45)/10)*((i-46)/9)*((i-47)/8)*((i-48)/7)*((i-49)/6)*((i-50)/5)*((i-51)/4)*((i-52)/3)*((i-53)/2)*((i-54)/1))+-34598925396029428*Math.round(1*((i-0)/56)*((i-1)/55)*((i-2)/54)*((i-3)/53)*((i-4)/52)*((i-5)/51)*((i-6)/50)*((i-7)/49)*((i-8)/48)*((i-9)/47)*((i-10)/46)*((i-11)/45)*((i-12)/44)*((i-13)/43)*((i-14)/42)*((i-15)/41)*((i-16)/40)*((i-17)/39)*((i-18)/38)*((i-19)/37)*((i-20)/36)*((i-21)/35)*((i-22)/34)*((i-23)/33)*((i-24)/32)*((i-25)/31)*((i-26)/30)*((i-27)/29)*((i-28)/28)*((i-29)/27)*((i-30)/26)*((i-31)/25)*((i-32)/24)*((i-33)/23)*((i-34)/22)*((i-35)/21)*((i-36)/20)*((i-37)/19)*((i-38)/18)*((i-39)/17)*((i-40)/16)*((i-41)/15)*((i-42)/14)*((i-43)/13)*((i-44)/12)*((i-45)/11)*((i-46)/10)*((i-47)/9)*((i-48)/8)*((i-49)/7)*((i-50)/6)*((i-51)/5)*((i-52)/4)*((i-53)/3)*((i-54)/2)*((i-55)/1))+68349348631526670*Math.round(1*((i-0)/57)*((i-1)/56)*((i-2)/55)*((i-3)/54)*((i-4)/53)*((i-5)/52)*((i-6)/51)*((i-7)/50)*((i-8)/49)*((i-9)/48)*((i-10)/47)*((i-11)/46)*((i-12)/45)*((i-13)/44)*((i-14)/43)*((i-15)/42)*((i-16)/41)*((i-17)/40)*((i-18)/39)*((i-19)/38)*((i-20)/37)*((i-21)/36)*((i-22)/35)*((i-23)/34)*((i-24)/33)*((i-25)/32)*((i-26)/31)*((i-27)/30)*((i-28)/29)*((i-29)/28)*((i-30)/27)*((i-31)/26)*((i-32)/25)*((i-33)/24)*((i-34)/23)*((i-35)/22)*((i-36)/21)*((i-37)/20)*((i-38)/19)*((i-39)/18)*((i-40)/17)*((i-41)/16)*((i-42)/15)*((i-43)/14)*((i-44)/13)*((i-45)/12)*((i-46)/11)*((i-47)/10)*((i-48)/9)*((i-49)/8)*((i-50)/7)*((i-51)/6)*((i-52)/5)*((i-53)/4)*((i-54)/3)*((i-55)/2)*((i-56)/1))+-126849859681465840*Math.round(1*((i-0)/58)*((i-1)/57)*((i-2)/56)*((i-3)/55)*((i-4)/54)*((i-5)/53)*((i-6)/52)*((i-7)/51)*((i-8)/50)*((i-9)/49)*((i-10)/48)*((i-11)/47)*((i-12)/46)*((i-13)/45)*((i-14)/44)*((i-15)/43)*((i-16)/42)*((i-17)/41)*((i-18)/40)*((i-19)/39)*((i-20)/38)*((i-21)/37)*((i-22)/36)*((i-23)/35)*((i-24)/34)*((i-25)/33)*((i-26)/32)*((i-27)/31)*((i-28)/30)*((i-29)/29)*((i-30)/28)*((i-31)/27)*((i-32)/26)*((i-33)/25)*((i-34)/24)*((i-35)/23)*((i-36)/22)*((i-37)/21)*((i-38)/20)*((i-39)/19)*((i-40)/18)*((i-41)/17)*((i-42)/16)*((i-43)/15)*((i-44)/14)*((i-45)/13)*((i-46)/12)*((i-47)/11)*((i-48)/10)*((i-49)/9)*((i-50)/8)*((i-51)/7)*((i-52)/6)*((i-53)/5)*((i-54)/4)*((i-55)/3)*((i-56)/2)*((i-57)/1))+189776303470473200*Math.round(1*((i-0)/59)*((i-1)/58)*((i-2)/57)*((i-3)/56)*((i-4)/55)*((i-5)/54)*((i-6)/53)*((i-7)/52)*((i-8)/51)*((i-9)/50)*((i-10)/49)*((i-11)/48)*((i-12)/47)*((i-13)/46)*((i-14)/45)*((i-15)/44)*((i-16)/43)*((i-17)/42)*((i-18)/41)*((i-19)/40)*((i-20)/39)*((i-21)/38)*((i-22)/37)*((i-23)/36)*((i-24)/35)*((i-25)/34)*((i-26)/33)*((i-27)/32)*((i-28)/31)*((i-29)/30)*((i-30)/29)*((i-31)/28)*((i-32)/27)*((i-33)/26)*((i-34)/25)*((i-35)/24)*((i-36)/23)*((i-37)/22)*((i-38)/21)*((i-39)/20)*((i-40)/19)*((i-41)/18)*((i-42)/17)*((i-43)/16)*((i-44)/15)*((i-45)/14)*((i-46)/13)*((i-47)/12)*((i-48)/11)*((i-49)/10)*((i-50)/9)*((i-51)/8)*((i-52)/7)*((i-53)/6)*((i-54)/5)*((i-55)/4)*((i-56)/3)*((i-57)/2)*((i-58)/1))+51028516348018696*Math.round(1*((i-0)/60)*((i-1)/59)*((i-2)/58)*((i-3)/57)*((i-4)/56)*((i-5)/55)*((i-6)/54)*((i-7)/53)*((i-8)/52)*((i-9)/51)*((i-10)/50)*((i-11)/49)*((i-12)/48)*((i-13)/47)*((i-14)/46)*((i-15)/45)*((i-16)/44)*((i-17)/43)*((i-18)/42)*((i-19)/41)*((i-20)/40)*((i-21)/39)*((i-22)/38)*((i-23)/37)*((i-24)/36)*((i-25)/35)*((i-26)/34)*((i-27)/33)*((i-28)/32)*((i-29)/31)*((i-30)/30)*((i-31)/29)*((i-32)/28)*((i-33)/27)*((i-34)/26)*((i-35)/25)*((i-36)/24)*((i-37)/23)*((i-38)/22)*((i-39)/21)*((i-40)/20)*((i-41)/19)*((i-42)/18)*((i-43)/17)*((i-44)/16)*((i-45)/15)*((i-46)/14)*((i-47)/13)*((i-48)/12)*((i-49)/11)*((i-50)/10)*((i-51)/9)*((i-52)/8)*((i-53)/7)*((i-54)/6)*((i-55)/5)*((i-56)/4)*((i-57)/3)*((i-58)/2)*((i-59)/1))} 

Esta función polinómica (simplificada hasta el grado 25 y sin redondeo) trazada, mira los valores para números enteros (legible para [6; 19]):

ingrese la descripción de la imagen aquí

Pruebas:

for (var i=0; i<60; i++) { console.log(i + ' : ' + digitsum(i)) }
0 : 0
1 : 1
2 : 2
3 : 3
4 : 4
5 : 5
6 : 6
7 : 7
8 : 8
9 : 9
10 : 1
11 : 2
12 : 3
13 : 4
14 : 5
15 : 6
16 : 7
17 : 8
18 : 9
19 : 10
20 : 2
21 : 3
22 : 4
23 : 5
24 : 6
25 : 7
26 : 8
27 : 9
28 : 10
29 : 11
30 : 3
31 : 4
32 : 5
33 : 6
34 : 7
35 : 8
36 : 9
37 : 10
38 : 11
39 : 12
40 : 4
41 : 5
42 : 6
43 : 7
44 : 8
45 : 9
46 : 10
47 : 11
48 : 12
49 : 13
50 : 5
51 : 6
52 : 7
53 : 8
54 : 9
55 : 10
56 : 12 //precision issue starts here
57 : 16
58 : 16
59 : 0 
Michael M.
fuente
+1 Esto es genial. Sin embargo, en lugar de una interpolación polinómica, es posible que desee hacer una interpolación spline, que también debería ser posible con un algoritmo evolutivo, pero podría ser más preciso.
SztupY
@SztupY, interesante! No estoy acostumbrado a trabajar con spline, pero ciertamente echaré un vistazo a este método. Gracias.
Michael M.