El solucionador de sudoku más rápido

21

Ganador encontrado

¡Parece que tenemos un ganador! A menos que alguien planee competir con el solucionador de Sudoku más rápido del mundo, el usuario 53x15 gana con el solucionador Tdoku asombrosamente rápido. Para cualquier persona que todavía trabaje en sus solucionadores, todavía haré pruebas comparativas de nuevos envíos cuando tenga tiempo.

El reto

El objetivo de un juego de Sudoku es llenar el tablero con los números 1-9, uno en cada celda, de tal manera que cada fila, columna y cuadro solo contenga cada número una vez. Un aspecto muy importante de un rompecabezas de Sudoku es que solo debe haber una solución válida.

El objetivo de este desafío es simple, debes resolver un conjunto de rompecabezas de Sudoku lo más rápido posible. Sin embargo, no solo resolverás cualquier Sudoku antiguo, sino que resolverás los rompecabezas de Sudoku más difíciles que existen, el Sudokus de 17 pistas. Aquí hay un ejemplo:

Sudoku duro

Reglas

Idioma

Eres libre de usar cualquier idioma. Si no tengo un compilador instalado para su idioma, debería poder proporcionar un conjunto de instrucciones de línea de comandos necesarias para instalar un entorno donde su script pueda ejecutarse en Linux .

Máquina de referencia

El punto de referencia se ejecutará en un Dell XPS 9560, Intel Core i7-7700HQ de 2,8 GHz (aumento de 3,8 GHz) 4 núcleos, 8 hilos, 16 GB de RAM. GTX 1050 4GB. La máquina ejecuta Ubuntu 19.04. Aquí está la unamesalida, para cualquier persona interesada.

Linux 5.0.0-25-generic #26-Ubuntu SMP Thu Aug 1 12:04:58 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

Entrada

La entrada se dará como un archivo. Se puede encontrar aquí . El archivo contiene 49151 rompecabezas de Sudoku. La primera línea del archivo es el número de rompecabezas, y cada línea posterior tiene 81 caracteres y representa un rompecabezas. Las células desconocidas son 0, y las células conocidas son 1-9.

Su programa debería poder tomar el nombre de archivo como argumento, o tener la entrada del archivo de STDIN , para facilitar la verificación manual de su solución. Incluya una instrucción sobre cómo su programa toma información.

Tiempo / puntuación

A partir de las discusiones en los comentarios y algunas reflexiones, los criterios de calificación se han cambiado para ser el momento de todo su programa. Su programa debe producir el archivo de salida con el hash correcto incluso durante la puntuación oficial. Esto no interfiere con ninguna solución existente, y no cambia la clasificación tal como está ahora. Cualquier idea sobre el sistema de puntuación es apreciada.

Si dos soluciones tienen puntajes similares para ejecuciones individuales, ejecutaré múltiples puntos de referencia y el tiempo promedio será el puntaje final. Si los puntajes promedio difieren en menos del 2%, lo consideraré un empate.

Si su solución tarda más de una hora en ejecutarse, no se puntuará oficialmente. En esos casos, usted es responsable de informar la máquina en la que se ejecutó y su puntaje. Para un solucionador optimizado, esto no debería ser un problema.

EDITAR : Me llamó la atención que si bien es difícil, el problema planteado no es el más difícil que existe. Si hay tiempo disponible, intentaré comparar las soluciones presentadas aquí con el conjunto de rompecabezas más difícil y agregar el puntaje a cada presentación. Sin embargo, esto no será un puntaje oficial, y es solo por diversión.

Verificación

Su solución será verificada por una suma de verificación MD5 / SHA256. Su script debería poder generar un archivo que contenga todos los rompecabezas y sus soluciones. Sin embargo, el archivo también se inspeccionará manualmente, así que no intente obtener una colisión hash. Su archivo de salida debe coincidir con:

MD5: 41704fd7d8fd0723a45ffbb2dbbfa488
SHA256:0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05

El archivo tendrá el formato:

<num_puzzles>
<unsolved_puzzle#1>,<solved_puzzle#1>
<unsolved_puzzle#2>,<solved_puzzle#2>
...
<unsolved_puzzle#n>,<solved_puzzle#n>

con una nueva línea final.

Lo que no está permitido

De ninguna manera está permitido codificar soluciones . Su algoritmo debe ser aplicable en cualquier conjunto de rompecabezas Sudoku, tanto Sudokus fácil como más difícil. Sin embargo, está completamente bien si su solución es lenta para acertijos más fáciles.

No se le permite tener un programa no determinista . Puede usar un generador de números aleatorios, pero la semilla del generador debe ser reparada. Esta regla es para garantizar que las mediciones sean más precisas y tengan menos varianza. (Gracias a Peter Taylor por el consejo)

No está autorizado a utilizar recursos externos o solicitudes web durante el tiempo de ejecución de su programa. Todo debe ser autónomo. Esto no se aplica a las bibliotecas y paquetes instalados, que están permitidos.

Otra información

Si desea otro conjunto de prueba para verificar su solución, aquí hay 10000 Sudokus más fáciles . Aquí están sus soluciones .

MD5: 3cb465ef6077c4fcab5bd6ae3bc50d62
SHA256:0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05

Si tiene alguna pregunta, no dude en preguntar, y trataré de aclarar cualquier malentendido.

maxb
fuente
Tengo un solucionador APL + WIN, pero a menos que tenga una copia del intérprete en su máquina, tendrá que contarme. Para obtener información, su ejemplo duro tomó 30 ms y el primer ejemplo fácil, 16 ms.
Graham
@Graham, tomó 30 ms para todos los 49151 sudokus, ¿o 30 ms en promedio?
maxb
Lamentablemente, 30 ms es solo para el ejemplo difícil. A menos que valga la pena perseguirlo, solo he ejecutado el solucionador APL contra su ejemplo difícil y el primero de los ejemplos fáciles. Si podemos extrapolar del ejemplo difícil, estamos viendo alrededor de 1500 segundos para el set completo
Graham
1
¿Las entradas también deben ser codificadas por golf? O ... ¿Pueden jugar al golf, por diversión? ;-)
El Matt
2
@TheMatt Preferiría no jugar al golf, solo para poder verificar que no pasa nada sospechoso
maxb

Respuestas:

5

C ++ - puntaje oficial de 0.201s

El uso de Tdoku ( código ; diseño ; puntos de referencia ) da estos resultados:

~ / tdoku $ lscpu | grep Model.name
Nombre del modelo: Intel (R) Core (TM) i7-4930K CPU @ 3.40GHz

~ / tdoku $ # build:
~ / tdoku $ CC = clang-8 CXX = clang ++ - 8 ./BUILD.sh
~ / tdoku $ clang -o resolver ejemplo / solve.c build / libtdoku.a 

~ / tdoku $ # ajusta el formato de entrada:
~ / tdoku $ sed -e "s / 0 /./ g" all_17_clue_sudokus.txt> all_17_clue_sudokus.txt.in

~ / tdoku $ # resolver:
~ / tdoku $ time ./solve 1 <all_17_clue_sudokus.txt.in> out.txt
0m0.241s reales
usuario 0m0.229s
sys 0m0.012s

~ / tdoku $ # ajusta el formato de salida y sha256sum:
~ / tdoku $ grep -v "^: 0: $" out.txt | sed -e "s /: 1: /, /" | tr. 0 | sha256sum
0bc8dda364db7b99f389b42383e37b411d9fa022204d124cb3c8959eba252f05 -

Tdoku ha sido optimizado para instancias difíciles de Sudoku. Pero tenga en cuenta, contrariamente a la declaración del problema, que 17 acertijos clave están lejos de ser el Sudoku más difícil. En realidad, se encuentran entre los más fáciles, y la mayoría no requiere retroceder en absoluto. Vea algunos de los otros conjuntos de datos de referencia en el proyecto Tdoku para los rompecabezas que son realmente difíciles.

También tenga en cuenta que, si bien Tdoku es el solucionador más rápido que conozco para los rompecabezas difíciles, no es el más rápido para los rompecabezas de 17 pistas. Para estos, creo que el más rápido es este proyecto de óxido , un derivado de JCZSolve, que fue optimizado para 17 acertijos durante el desarrollo. Dependiendo de la plataforma, puede ser un 5-25% más rápido que Tdoku para estos acertijos.

53x15
fuente
Wow, esa fue una lectura interesante sobre la implementación y la teoría detrás de esto. Antes de comenzar este desafío, quería encontrar solucionadores y conjuntos de datos de última generación. Supongo que no busqué lo suficiente. De los artículos "científicos" populares, los acertijos de 17 pistas fueron todo lo que se habló, por lo que supuse que eran los más difíciles. Intentaré ejecutar todos los envíos con los conjuntos de datos presentados en su artículo, y compararé su envío más tarde hoy. ¡Trabajo fantástico!
maxb
¡Gracias! Usted ve en el artículo que encontrar soluciones de vanguardia me llevó a un largo viaje. :-) Entiendo por qué las personas se centran en acertijos de 17 pistas: el conjunto de datos es bien conocido, bien definido, completo o casi, moderadamente grande y difícil para los solucionadores ingenuos. Si bien es interesante estudiar rompecabezas más difíciles, la dureza es difícil de formalizar. por ejemplo, ¿queremos decir subjetiva o empíricamente difícil para los humanos según las técnicas requeridas? ¿queremos decir lento en promedio para un solucionador dado bajo permutaciones aleatorias? ¿Nos referimos al tamaño mínimo de puerta trasera bajo una fórmula con inferencias de casilleros elegidas? etc.
53x15
8

Node.js , 8.231s 6.735s puntuación oficial

Toma el nombre del archivo como argumento. El archivo de entrada ya puede contener las soluciones en el formato descrito en el desafío, en cuyo caso el programa las comparará con sus propias soluciones.

Los resultados se guardan en 'sudoku.log' .

Código

'use strict';

const fs = require('fs');

const BLOCK     = [];
const BLOCK_NDX = [];
const N_BIT     = [];
const ZERO      = [];
const BIT       = [];

console.time('Processing time');

init();

let filename = process.argv[2],
    puzzle = fs.readFileSync(filename).toString().split('\n'),
    len = puzzle.shift(),
    output = len + '\n';

console.log("File '" + filename + "': " + len + " puzzles");

// solve all puzzles
puzzle.forEach((p, i) => {
  let sol, res;

  [ p, sol ] = p.split(',');

  if(p.length == 81) {
    if(!(++i % 2000)) {
      console.log((i * 100 / len).toFixed(1) + '%');
    }
    if(!(res = solve(p))) {
      throw "Failed on puzzle " + i;
    }
    if(sol && res != sol) {
      throw "Invalid solution for puzzle " + i;
    }
    output += p + ',' + res + '\n';
  }
});

// results
console.timeEnd('Processing time');
fs.writeFileSync('sudoku.log', output);
console.log("MD5 = " + require('crypto').createHash('md5').update(output).digest("hex"));

// initialization of lookup tables
function init() {
  let ptr, x, y;

  for(x = 0; x < 0x200; x++) {
    N_BIT[x] = [0, 1, 2, 3, 4, 5, 6, 7, 8].reduce((s, n) => s + (x >> n & 1), 0);
    ZERO[x] = ~x & -~x;
  }

  for(x = 0; x < 9; x++) {
    BIT[1 << x] = x;
  }

  for(ptr = y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++, ptr++) {
      BLOCK[ptr] = (y / 3 | 0) * 3 + (x / 3 | 0);
      BLOCK_NDX[ptr] = (y % 3) * 3 + x % 3;
    }
  }
}

// solver
function solve(p) {
  let ptr, x, y, v,
      count = 81,
      m = Array(81).fill(-1),
      row = Array(9).fill(0),
      col = Array(9).fill(0),
      blk = Array(9).fill(0);

  // helper function to check and play a move
  function play(stack, x, y, n) {
    let p = y * 9 + x;

    if(~m[p]) {
      if(m[p] == n) {
        return true;
      }
      undo(stack);
      return false;
    }

    let msk, b;

    msk = 1 << n;
    b = BLOCK[p];

    if((col[x] | row[y] | blk[b]) & msk) {
      undo(stack);
      return false;
    }
    count--;
    col[x] ^= msk;
    row[y] ^= msk;
    blk[b] ^= msk;
    m[p] = n;
    stack.push(x << 8 | y << 4 | n);

    return true;
  }

  // helper function to undo all moves on the stack
  function undo(stack) {
    stack.forEach(v => {
      let x = v >> 8,
          y = v >> 4 & 15,
          p = y * 9 + x,
          b = BLOCK[p];

      v = 1 << (v & 15);

      count++;
      col[x] ^= v;
      row[y] ^= v;
      blk[b] ^= v;
      m[p] = -1;
    });
  }

  // convert the puzzle into our own format
  for(ptr = y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++, ptr++) {
      if(~(v = p[ptr] - 1)) {
        col[x] |= 1 << v;
        row[y] |= 1 << v;
        blk[BLOCK[ptr]] |= 1 << v;
        count--;
        m[ptr] = v;
      }
    }
  }

  // main recursive search function
  let res = (function search() {
    // success?
    if(!count) {
      return true;
    }

    let ptr, x, y, v, n, max, best,
        k, i, stack = [],
        dCol = Array(81).fill(0),
        dRow = Array(81).fill(0),
        dBlk = Array(81).fill(0),
        b, v0;

    // scan the grid:
    // - keeping track of where each digit can go on a given column, row or block
    // - looking for a cell with the fewest number of legal moves
    for(max = ptr = y = 0; y < 9; y++) {
      for(x = 0; x < 9; x++, ptr++) {
        if(m[ptr] == -1) {
          v = col[x] | row[y] | blk[BLOCK[ptr]];
          n = N_BIT[v];

          // abort if there's no legal move on this cell
          if(n == 9) {
            return false;
          }

          // update dCol[], dRow[] and dBlk[]
          for(v0 = v ^ 0x1FF; v0;) {
            b = v0 & -v0;
            dCol[x * 9 + BIT[b]] |= 1 << y;
            dRow[y * 9 + BIT[b]] |= 1 << x;
            dBlk[BLOCK[ptr] * 9 + BIT[b]] |= 1 << BLOCK_NDX[ptr];
            v0 ^= b;
          }

          // update the cell with the fewest number of moves
          if(n > max) {
            best = {
              x  : x,
              y  : y,
              ptr: ptr,
              msk: v
            };
            max = n;
          }
        }
      }
    }

    // play all forced moves (unique candidates on a given column, row or block)
    // and make sure that it doesn't lead to any inconsistency
    for(k = 0; k < 9; k++) {
      for(n = 0; n < 9; n++) {
        if(N_BIT[dCol[k * 9 + n]] == 1) {
          i = BIT[dCol[k * 9 + n]];

          if(!play(stack, k, i, n)) {
            return false;
          }
        }

        if(N_BIT[dRow[k * 9 + n]] == 1) {
          i = BIT[dRow[k * 9 + n]];

          if(!play(stack, i, k, n)) {
            return false;
          }
        }

        if(N_BIT[dBlk[k * 9 + n]] == 1) {
          i = BIT[dBlk[k * 9 + n]];

          if(!play(stack, (k % 3) * 3 + i % 3, (k / 3 | 0) * 3 + (i / 3 | 0), n)) {
            return false;
          }
        }
      }
    }

    // if we've played at least one forced move, do a recursive call right away
    if(stack.length) {
      if(search()) {
        return true;
      }
      undo(stack);
      return false;
    }

    // otherwise, try all moves on the cell with the fewest number of moves
    while((v = ZERO[best.msk]) < 0x200) {
      col[best.x] ^= v;
      row[best.y] ^= v;
      blk[BLOCK[best.ptr]] ^= v;
      m[best.ptr] = BIT[v];
      count--;

      if(search()) {
        return true;
      }

      count++;
      m[best.ptr] = -1;
      col[best.x] ^= v;
      row[best.y] ^= v;
      blk[BLOCK[best.ptr]] ^= v;

      best.msk ^= v;
    }

    return false;
  })();

  return res ? m.map(n => n + 1).join('') : false;
}

// debugging
function dump(m) {
  let x, y, c = 81, s = '';

  for(y = 0; y < 9; y++) {
    for(x = 0; x < 9; x++) {
      s += (~m[y * 9 + x] ? (c--, m[y * 9 + x] + 1) : '-') + (x % 3 < 2 || x == 8 ? ' ' : ' | ');
    }
    s += y % 3 < 2 || y == 8 ? '\n' : '\n------+-------+------\n';
  }
  console.log(c);
  console.log(s);
}

Salida de ejemplo

Probado en un Intel Core i7 7500U @ 2.70 GHz.

salida

Arnauld
fuente
Podría tener que aclarar la puntuación. Si hace algo en paralelo, su puntaje sigue siendo la suma de todos los tiempos de resolución individuales. Debe calcular esa suma y presentarla como su puntaje. De esa manera, se trata más de obtener el código lo más rápido posible. El código siempre puede ser paralelo a los rompecabezas 49151, lo que hace que esa parte sea trivial. Podría cambiar la puntuación para que sea el tiempo total del programa y no permitir el subprocesamiento múltiple. O, ¿quizás el subproceso múltiple debería ser parte del desafío?
maxb
1
@maxb Ya veo. No entendí que tu preocupación era sobre subprocesos múltiples.
Arnauld
1
¿Por qué su solución es mucho más rápida que las otras?
Anush
2
@Anush Lo que he llamado 'movimientos forzados' en el código es lo que lo hace significativamente más rápido y es mejor conocido como singles ocultos . (También podríamos buscar gemelos, triples, cuádriceps, etc. ocultos, pero no estoy seguro de que realmente valga la pena, al menos en Node.)
Arnauld
3
" Empecé a mirar solteros desnudos ", cuidado con la redacción :)
ngn
3

Python 3 (con dlx ) 4min 46.870s puntaje oficial

(Single Core i7-3610QM aquí)

Obviamente superable con un lenguaje compilado como C, y haciendo uso de subprocesos, pero es un comienzo ...

sudokues un módulo que he colocado en github (copiado al pie de esta publicación) que se usa dlxdebajo del capó.

#!/usr/bin/python
import argparse
import gc
import sys
from timeit import timeit

from sudoku import Solver

def getSolvers(filePath):
    solvers = []
    with open(filePath, 'r') as inFile:
        for line in inFile:
            content = line.rstrip()
            if len(content) == 81 and content.isdigit():
                solvers.append(Solver(content))
    return solvers

def solve(solvers):
    for solver in solvers:
        yield next(solver.genSolutions())

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Time or print solving of some sudoku.')
    parser.add_argument('filePath',
                        help='Path to the file containing proper sudoku on their own lines as 81 digits in row-major order with 0s as blanks')
    parser.add_argument('-p', '--print', dest='printEm', action='store_true',
                        default=False,
                        help='print solutions in the same fashion as the input')
    parser.add_argument('-P', '--pretty', dest='prettyPrintEm', action='store_true',
                        default=False,
                        help='print inputs and solutions formatted for human consumption')
    args = parser.parse_args()

    if args.printEm or args.prettyPrintEm:
        solvers = getSolvers(args.filePath)
        print(len(solvers))
        for solver, solution in zip(solvers, solve(solvers)):
            if args.prettyPrintEm:
                print(solver)
                print(solution)
            else:
                print('{},{}'.format(solver.representation(noneCharacter='0'), solution.representation()))
    else:
        setup = '''\
from __main__ import getSolvers, solve, args, gc
gc.disable()
solvers = getSolvers(args.filePath)'''
        print(timeit("for solution in solve(solvers): pass", setup=setup, number=1))

Uso

  • Instalar Python 3
  • Guarde en sudoku.pyalgún lugar de su ruta (desde el enlace de git hub o cópielo desde abajo)
  • Guarde el código anterior como en testSolver.pyalgún lugar de su ruta
  • Instalar dlx:
python -m pip install dlx
  • Ejecútelo (por cierto, consume memoria como si estuviera pasando de moda)
uso: testSolver.py [-h] [-p] [-P] filePath

Tiempo o impresión de algunos sudoku.

argumentos posicionales:
  filePath Ruta al archivo que contiene el sudoku adecuado en sus propias líneas
                como 81 dígitos en orden de fila mayor con 0 como espacios en blanco

argumentos opcionales:
  -h, - ayuda a mostrar este mensaje de ayuda y salir
  -p, --imprima soluciones de impresión de la misma manera que la entrada
  -P, - entradas y soluciones de impresión pequeña formateadas para consumo humano

Salida de tubería como se requiere en la especificación de desafío a un archivo si es necesario:

python testSolver.py -p input_file_path> output_file_path

sudoku.py (sí, hay características adicionales aquí además de resolver)

import dlx
from itertools import permutations, takewhile
from random import choice, shuffle

'''
A 9 by 9 sudoku solver.
'''
_N = 3
_NSQ = _N**2
_NQU = _N**4
_VALID_VALUE_INTS = list(range(1, _NSQ + 1))
_VALID_VALUE_STRS = [str(v) for v in _VALID_VALUE_INTS]
_EMPTY_CELL_CHAR = '·'

# The following are mutually related by their ordering, and define ordering throughout the rest of the code. Here be dragons.
#
_CANDIDATES = [(r, c, v) for r in range(_NSQ) for c in range(_NSQ) for v in range(1, _NSQ + 1)]
_CONSTRAINT_INDEXES_FROM_CANDIDATE = lambda r, c, v: [ _NSQ * r + c, _NQU + _NSQ * r + v - 1, _NQU * 2 + _NSQ * c + v - 1, _NQU * 3 + _NSQ * (_N * (r // _N) + c // _N) + v - 1]
_CONSTRAINT_FORMATTERS =                             [ "R{0}C{1}"  , "R{0}#{1}"                , "C{0}#{1}"                   , "B{0}#{1}"]
_CONSTRAINT_NAMES = [(s.format(a, b + (e and 1)), dlx.DLX.PRIMARY) for e, s in enumerate(_CONSTRAINT_FORMATTERS) for a in range(_NSQ) for b in range(_NSQ)]
_EMPTY_GRID_CONSTRAINT_INDEXES = [_CONSTRAINT_INDEXES_FROM_CANDIDATE(r, c, v) for (r, c, v) in _CANDIDATES]
#
# The above are mutually related by their ordering, and define ordering throughout the rest of the code. Here be dragons.


class Solver:
    def __init__(self, representation=''):
        if not representation or len(representation) != _NQU:
            self._complete = False
            self._NClues = 0
            self._repr = [None]*_NQU # blank grid, no clues - maybe to extend to a generator by overriding the DLX column selection to be stochastic.
        else:
            nClues = 0
            repr = []
            for value in representation:
                if not value:
                    repr.append(None)
                elif isinstance(value, int) and 1 <= value <= _NSQ:
                    nClues += 1
                    repr.append(value)
                elif value in _VALID_VALUE_STRS:
                    nClues += 1
                    repr.append(int(value))
                else:
                    repr.append(None)
            self._complete = nClues == _NQU
            self._NClues = nClues
            self._repr = repr

    def genSolutions(self, genSudoku=True, genNone=False, dlxColumnSelctor=None):
        '''
        if genSudoku=False, generates each solution as a list of cell values (left-right, top-bottom)
        '''
        if self._complete:
            yield self
        else:
            self._initDlx()
            dlxColumnSelctor = dlxColumnSelctor or dlx.DLX.smallestColumnSelector
            if genSudoku:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield Solver([v for (r, c, v) in sorted([self._dlx.N[i] for i in solution])])
            elif genNone:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield
            else:
                for solution in self._dlx.solve(dlxColumnSelctor):
                    yield [v for (r, c, v) in sorted([self._dlx.N[i] for i in solution])]

    def uniqueness(self, returnSolutionIfProper=False):
        '''
        Returns: 0 if unsolvable;
                 1 (or the unique solution if returnSolutionIfProper=True) if uniquely solvable; or
                 2 if multiple possible solutions exist
        - a 'proper' sudoku is uniquely solvable.
        '''
        slns = list(takewhile(lambda t: t[0] < 2, ((i, sln) for i, sln in enumerate(self.genSolutions(genSudoku=returnSolutionIfProper, genNone=not returnSolutionIfProper)))))
        uniqueness = len(slns)
        if returnSolutionIfProper and uniqueness == 1:
            return slns[0][1]
        else:
            return uniqueness

    def representation(self, asString=True, noneCharacter='.'):
        if asString:
            return ''.join([v and str(_VALID_VALUE_STRS[v - 1]) or noneCharacter for v in self._repr])
        return self._repr[:]

    def __repr__(self):
        return display(self._repr)

    def _initDlx(self):
        self._dlx = dlx.DLX(_CONSTRAINT_NAMES)
        rowIndexes = self._dlx.appendRows(_EMPTY_GRID_CONSTRAINT_INDEXES, _CANDIDATES)
        for r in range(_NSQ):
            for c in range(_NSQ):
                v = self._repr[_NSQ * r + c]
                if v is not None:
                    self._dlx.useRow(rowIndexes[_NQU * r + _NSQ * c + v - 1])


_ROW_SEPARATOR_COMPACT = '+'.join(['-' * (2 * _N + 1) for b in range(_N)])[1:-1] + '\n'
_ROW_SEPARATOR = ' ·-' + _ROW_SEPARATOR_COMPACT[:-1] + '-·\n'
_TOP_AND_BOTTOM = _ROW_SEPARATOR.replace('+', '·')

_ROW_LABELS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J']
_COL_LABELS = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
_COLS_LABEL = ' ' + ' '.join([i % _N == 0 and '  ' + l or l for i, l in enumerate(_COL_LABELS)]) + '\n'


def display(representation, conversion=None, labelled=True):
    result = ''
    raw = [conversion[n or 0] for n in representation] if conversion else representation
    if labelled:
        result += _COLS_LABEL + _TOP_AND_BOTTOM
        rSep = _ROW_SEPARATOR
    else:
        rSep = _ROW_SEPARATOR_COMPACT
    for r in range(_NSQ):
        if r > 0 and r % _N == 0:
            result += rSep
        for c in range(_NSQ):
            if c % _N == 0:
                if c == 0:
                    if labelled:
                        result += _ROW_LABELS[r] + '| '
                else:
                    result += '| '
            result += str(raw[_NSQ * r + c] or _EMPTY_CELL_CHAR) + ' '
        if labelled:
            result += '|'
        result += '\n'
    if labelled:
        result += _TOP_AND_BOTTOM
    else:
        result = result[:-1]
    return result

def permute(representation):
    '''
    returns a random representation from the given representation's equivalence class
    '''
    rows = [list(representation[i:i+_NSQ]) for i in range(0, _NQU, _NSQ)]
    rows = permuteRowsAndBands(rows)
    rows = [[r[i] for r in rows] for i in range(_NSQ)]
    rows = permuteRowsAndBands(rows)
    pNumbers = [str(i) for i in range(1, _NSQ + 1)]
    shuffle(pNumbers)
    return ''.join(''.join([pNumbers[int(v) - 1] if v.isdigit() and v != '0' else v for v in r]) for r in rows)

def permuteRowsAndBands(rows):
    bandP = choice([x for x in permutations(range(_N))])
    rows = [rows[_N * b + r] for b in bandP for r in range(_N)]
    for band in range(0, _NSQ, _N):
        rowP = choice([x for x in permutations([band + i for i in range(_N)])])
        rows = [rows[rowP[i % _N]] if i // _N == band else rows[i] for i in range(_NSQ)]
    return rows


def getRandomSolvedStateRepresentation():
    return permute('126459783453786129789123456897231564231564897564897231312645978645978312978312645')


def getRandomSudoku():
    r = getRandomSolvedStateRepresentation()
    s = Solver(r)
    indices = list(range(len(r)))
    shuffle(indices)
    for i in indices:
        ns = Solver(s._repr[:i] + [None] + s._repr[i+1:])
        if ns.uniqueness() == 1:
            s = ns
    return s


if __name__ == '__main__':
    print('Some example useage:')
    inputRepresentation = '..3......4......2..8.12...6.........2...6...7...8.7.31.1.64.9..6.5..8...9.83...4.'
    print('>>> s = Solver({})'.format(inputRepresentation))
    s = Solver(inputRepresentation)
    print('>>> s')
    print(s)
    print('>>> print(s.representation())')
    print(s.representation())
    print('>>> print(display(s.representation(), labelled=False))')
    print(display(s.representation(), labelled=False))
    print('>>> for solution in s.genSolutions(): solution')
    for solution in s.genSolutions(): print(solution)
    inputRepresentation2 = inputRepresentation[:2] + '.' + inputRepresentation[3:]
    print('>>> s.uniqueness()')
    print(s.uniqueness())
    print('>>> s2 = Solver({})  # removed a clue; this has six solutions rather than one'.format(inputRepresentation2))
    s2 = Solver(inputRepresentation2)
    print('>>> s2.uniqueness()')
    print(s2.uniqueness())
    print('>>> for solution in s2.genSolutions(): solution')
    for solution in s2.genSolutions(): print(solution)
    print('>>> s3 = getRandomSudoku()')
    s3 = getRandomSudoku()
    print('>>> s3')
    print(s3)
    print('>>> for solution in s3.genSolutions(): solution')
    for solution in s3.genSolutions(): print(solution)
Jonathan Allan
fuente
Impresionante para una solución de Python, intentaré compararla más tarde hoy.
maxb
1
Gracias; y wow, mucho más rápido que maxb!
Jonathan Allan
1
+1 por usar enlaces de baile
Anush
3

Python 3 + Z3 - 10min 45.657s puntuación oficial

alrededor de 1000 en mi computadora portátil.

import time
start = time.time()

import z3.z3 as z3
import itertools
import datetime
import sys

solver = z3.Solver()
ceils = [[None] * 9 for i in range(9)]

for row in range(9):
    for col in range(9):
        name = 'c' + str(row * 9 + col)
        ceil = z3.BitVec(name, 9)
        solver.add(z3.Or(
            ceil == 0b000000001,
            ceil == 0b000000010,
            ceil == 0b000000100,
            ceil == 0b000001000,
            ceil == 0b000010000,
            ceil == 0b000100000,
            ceil == 0b001000000,
            ceil == 0b010000000,
            ceil == 0b100000000
        ))
        solver.add(ceil != 0)
        ceils[row][col] = ceil
for i in range(9):
    for j in range(9):
        for k in range(9):
            if j == k: continue
            solver.add(ceils[i][j] & ceils[i][k] == 0)
            solver.add(ceils[j][i] & ceils[k][i] == 0)
            row, col = i // 3 * 3, i % 3 * 3
            solver.add(ceils[row + j // 3][col + j % 3] & ceils[row + k // 3][col + k % 3] == 0)

row_col = list(itertools.product(range(9), range(9)))
lookup = { 1 << i: str(i + 1) for i in range(9) }

def solve(line):
    global solver, output, row_col, ceils, lookup
    solver.push()
    for value, (row, col) in zip(line, row_col):
        val = ord(value) - 48
        if val == 0: continue
        solver.add(ceils[row][col] == 1 << (val - 1))

    output = []
    if solver.check() == z3.sat:
        model = solver.model()
        for row in range(9):
            for col in range(9):
                val = model[ceils[row][col]].as_long()
                output.append(lookup[val])
    solver.pop()

    return ''.join(output)

count = int(input())
print(count)
for i in range(count):
    if i % 1000 == 0:
        sys.stderr.write(str(i) + '\n')
    line = input()
    print(line + "," + solve(line))
end = time.time()

sys.stderr.write(str(end - start))

Instalar dependencia

pip install z3-solver

correr

python3 solve.py <in.txt> out.txt

No estoy seguro de cómo mejorar su rendimiento, ya que se resolvió mágicamente ...

tsh
fuente
Muy impresionante para un solucionador de restricciones generales. Mi primera implementación fue mucho más lenta que esta. Ejecutando un punto de referencia en este momento, actualizaré la publicación una vez que esté hecha.
maxb
@maxb acaba de hacer una limpieza general, y creo que no hay necesidad de actualizar el punto de referencia ...
tsh
3

C - 2.228s 1.690s puntaje oficial

basado en @ Arnauld

#include<fcntl.h>
#define O const
#define R return
#define S static
#define  $(x,y...)if(x){y;}
#define  W(x,y...)while(x){y;}
#define fi(x,y...)for(I i=0,_n=(x);i<_n;i++){y;}
#define fj(x,y...)for(I j=0,_n=(x);j<_n;j++){y;}
#define fp81(x...)for(I p=0;p<81;p++){x;}
#define  fq3(x...)for(I q=0;q<3;q++){x;}
#define fij9(x...){fi(9,fj(9,x))}
#define m0(x)m0_((V*)(x),sizeof(x));
#define popc(x)__builtin_popcount(x)
#define ctz(x)__builtin_ctz(x)
#include<sys/syscall.h>
#define sc(f,x...)({L u;asm volatile("syscall":"=a"(u):"0"(SYS_##f)x:"cc","rcx","r11","memory");u;})
#define sc1(f,x)    sc(f,,"D"(x))
#define sc2(f,x,y)  sc(f,,"D"(x),"S"(y))
#define sc3(f,x,y,z)sc(f,,"D"(x),"S"(y),"d"(z))
#define wr(a...)sc3(write,a)
#define op(a...)sc3( open,a)
#define cl(a...)sc1(close,a)
#define fs(a...)sc2(fstat,a)
#define ex(a...)sc1( exit,a)
#define mm(x,y,z,t,u,v)({register L r10 asm("r10")=t,r8 asm("r8")=u,r9 asm("r9")=v;\
                         (V*)sc(mmap,,"D"(x),"S"(y),"d"(z),"r"(r10),"r"(r8),"r"(r9));})
typedef void V;typedef char C;typedef short H;typedef int I;typedef long long L;
S C BL[81],KL[81],IJK[81][3],m[81],t_[81-17],*t;S H rcb[3][9],cnt;
S V*mc(V*x,O V*y,L n){C*p=x;O C*q=y;fi(n,*p++=*q++)R x;}S V m0_(C*p,L n){fi(n,*p++=0);}
S I undo(C*t0){cnt+=t-t0;W(t>t0,C p=*--t;H v=1<<m[p];fq3(rcb[q][IJK[p][q]]^=v)m[p]=-1)R 0;}
S I play(C p,H v){$(m[p]>=0,R 1<<m[p]==v)I w=0;fq3(w|=rcb[q][IJK[p][q]])$(w&v,R 0)cnt--;
                  fq3(rcb[q][IJK[p][q]]^=v);m[p]=ctz(v);*t++=p;R 1;}
S I f(){$(!cnt,R 1)C*t0=t;H max=0,bp,bv,d[9][9][4];m0(d);
 fij9(I p=i*9+j;$(m[p]<0,
  I v=0;fq3(v|=rcb[q][IJK[p][q]])I w=v^511;$(!w,R 0)H g[]={1<<j,1<<i,1<<BL[p]};
  do{I z=ctz(w);w&=w-1;fq3(d[IJK[p][q]][z][q]|=g[q]);}while(w);
  I n=popc(v);$(max<n,max=n;bp=p;bv=v)))
 fij9(I u=d[i][j][0];$(popc(u)==1,I l=ctz(u);$(!play(   i*9+l ,1<<j),R undo(t0)))
        u=d[i][j][1];$(popc(u)==1,I l=ctz(u);$(!play(   l*9+i ,1<<j),R undo(t0)))
        u=d[i][j][2];$(popc(u)==1,I l=ctz(u);$(!play(KL[i*9+l],1<<j),R undo(t0))))
 $(t-t0,R f()||undo(t0))
 W(1,I v=1<<ctz(~bv);$(v>511,R 0)fq3(rcb[q][IJK[bp][q]]^=v)m[bp]=ctz(v);cnt--;$(f(),R 1)
     cnt++;m[bp]=-1;fq3(rcb[q][IJK[bp][q]]^=v)bv^=v)
 R 0;}
asm(".globl _start\n_start:pop %rdi\nmov %rsp,%rsi\njmp main");
V main(I ac,C**av){$(ac!=2,ex(2))
 fij9(I p=i*9+j;BL[p]=i%3*3+j%3;KL[p]=(i/3*3+j/3)*9+BL[p];IJK[p][0]=i;IJK[p][1]=j;IJK[p][2]=i/3*3+j/3)
 I d=op(av[1],0,0);struct stat h;fs(d,&h);C*s0=mm(0,h.st_size,1,0x8002,d,0),*s=s0;cl(d); //in
 C*r0=mm(0,2*h.st_size,3,0x22,-1,0),*r=r0; //out
 I n=0;W(*s!='\n',n*=10;n+=*s++-'0')s++;mc(r,s0,s-s0);r+=s-s0;
 fi(n,m0(rcb);cnt=81;t=t_;$(s[81]&&s[81]!='\n',ex(3))mc(r,s,81);r+=81;*r++=',';
      fp81(I v=m[p]=*s++-'1';$(v>=0,v=1<<v;fq3(rcb[q][IJK[p][q]]|=v)cnt--))
      s++;$(!f(),ex(4))fp81(r[p]=m[p]+'1')r+=81;*r++='\n')
 wr(1,r0,r-r0);ex(0);}

compilar y ejecutar:

gcc -O3 -march=native -nostdlib -ffreestanding
time ./a.out all_17_clue_sudokus.txt | md5sum
ngn
fuente
Felicitaciones, usted (y Arnauld) están a la cabeza de muchos en este momento.
maxb
@maxb intenté usar E / S más eficientes (syscalls directas sin libc) pero el efecto no fue tan bueno como esperaba. También ordené el resto del código. Esto debería quitar ~ 0.2s. ¿te importa volver a anotar?
NGN
Por supuesto, intentaré hacerlo en algún momento hoy
maxb
También estaba pensando en probar un RAMdisk para todas las E / S, solo para ver si eso marca la diferencia. Dudo que haga una gran diferencia, ya que las lecturas y escrituras son secuenciales, y mi SSD tiene un caché lo suficientemente grande como para adaptarse a todo.
maxb
@maxb probablemente no habrá ninguna diferencia en absoluto. la segunda vez que ejecute el programa, el archivo de entrada ya estará en ram de todos modos, en el caché del sistema de archivos de linux.
ngn
2

C - 12min 28.374s puntaje oficial

funciona durante unos 30m 15m en mi i5-7200U y produce el hash md5 correcto

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/time.h>
#define B break
#define O const
#define P printf
#define R return
#define S static
#define $(x,y...)  if(x){y;}
#define E(x...)    else{x;}
#define W(x,y...)  while(x){y;}
#define fi(x,y...) for(I i=0,_n=(x);i<_n;i++){y;}
#define fj(x,y...) for(I j=0,_n=(x);j<_n;j++){y;}
typedef void V;typedef char C;typedef short H;typedef int I;typedef long long L;
S C h[81][20]; //h[i][0],h[i][1],..,h[i][19] are the squares that clash with square i
S H a[81]      //a[i]: bitmask of possible choices; initially one of 1<<0, 1<<1 .. 1<<8, or 511 (i.e. nine bits set)
   ,b[81];     //b[i]: negated bitmask of impossible chioces; once we know square i has value v, b[i] becomes ~(1<<v)
S I f(){ //f:recursive solver
 I p=-1; //keep track of the popcount (number of 1 bits) in a
 W(1,I q=0;                                         //simple non-recursive deductions:
     fi(81,fj(20,a[i]&=b[h[i][j]])                  // a[i] must not share bits with its clashing squares
           $(!(a[i]&a[i]-1),$(!a[i],R 0)b[i]=~a[i]) // if a[i] has one bit left, update b[i].  if a[i]=0, we have a contradiction
           q+=__builtin_popcount(a[i]))             // compute new popcount
     $(p==q,B)p=q;)                                 // if the popcount of a[] changed, try to do more deductions
 I k=-1,mc=10;fi(81,$(b[i]==-1,I c=__builtin_popcount(a[i]);$(c<mc,k=i;mc=c;$(c==2,B)))) //find square with fewest options left
 $(k==-1,R 1) //if there isn't any such, we're done - success! otherwise k is that square
 fi(9,$(a[k]&1<<i,H a0[81],b0[81];                                        //try different values for square k
                  memcpy(a0,a,81*sizeof(*a));memcpy(b0,b,81*sizeof(*b));  // save a and b
                  a[k]=1<<i;b[k]=~a[k];$(f(),R 1)                         // set square k and make a recursive call
                  memcpy(a,a0,81*sizeof(*a));memcpy(b,b0,81*sizeof(*b)))) // restore a and b
 R 0;}
S L tm(){struct timeval t;gettimeofday(&t,0);R t.tv_sec*1000000+t.tv_usec;} //current time in microseconds
I main(){L t=0;I n;scanf("%d",&n);P("%d\n",n);
 fi(81,L l=0;fj(81,$(i!=j&&(i%9==j%9||i/9==j/9||(i/27==j/27&&i%9/3==j%9/3)),h[i][l++]=j))) //precompute h
 fi(n,S C s[82];scanf("%s",s);printf("%s,",s);                        //i/o and loop over puzzles
      fj(81,a[j]=s[j]=='0'?511:1<<(s[j]-'1');b[j]=s[j]=='0'?-1:~a[j]) //represent '1' .. '9' as 1<<0 .. 1<<8, and 0 as 511
      t-=tm();I r=f();t+=tm();                                        //measure time only for the solving function
      $(!r,P("can't solve\n");exit(1))                                //shouldn't happen
      fj(81,s[j]=a[j]&a[j]-1?'0':'1'+__builtin_ctz(a[j]))             //1<<0 .. 1<<8 to '1' .. '9'
      P("%s\n",s))                                                    //output
 fflush(stdout);dprintf(2,"time:%lld microseconds\n",t);R 0;}         //print self-measured time to stderr so it doesn't affect stdout's md5

compilar (preferiblemente con clang v6) y ejecutar:

clang -O3 -march=native a.c
time ./a.out <all_17_clue_sudokus.txt | tee o.txt | nl
md5sum o.txt
ngn
fuente
3
¿Por qué tan feo? ¡Esto no es código golf!
Jonathan Allan
3
@JonathanAllan así es como suelo codificar (a menos que esté en un equipo que prefiera hacer lo contrario). es hermoso :)
ngn
1
Jaja, "hermosa", y fácil de volver en 6 meses: p
Jonathan Allan
1
Si, en realidad. He estado haciendo esto durante un par de años y me parece más eficiente. en el mundo apl se conoce como estilo incunabulum . Con el código hinchado, mueves los ojos en su mayoría verticalmente (antinatural e inadecuado para nuestros monitores de paisaje) y te desplazas mucho. con un código apretado puede verlo todo a la vez, por lo que es más fácil orientarse y juzgar su complejidad de un vistazo.
ngn
¿Es una solución de retroceso? Veo dos memcpyallí y algo de recursión. Intentaré verificarlo hoy.
maxb
2

Java - puntuación oficial de 4.056s

La idea principal de esto es nunca asignar memoria cuando no es necesaria. La única excepción son las primitivas, que el compilador debe optimizar de todos modos. Todo lo demás se almacena como máscaras y conjuntos de operaciones realizadas en cada paso, que se pueden deshacer cuando se completa el paso de recursión.

Aproximadamente la mitad de todos los sudokus se resuelven por completo sin retroceder, pero si presiono ese número más alto, el tiempo general parece ser más lento. Estoy planeando reescribir esto en C ++ y optimizar aún más, pero este solucionador se está convirtiendo en un gigante.

Quería implementar el mayor almacenamiento en caché posible, lo que condujo a algunos problemas. Por ejemplo, si hay dos celdas en la misma fila que solo pueden tener el número 6, entonces hemos llegado a un caso imposible, y deberíamos volver al rastreo. Pero como calculé todas las opciones en un barrido y luego coloqué los números en las celdas con una sola posibilidad, no verifiqué que había colocado un número en la misma fila justo antes. Esto lleva a soluciones imposibles.

Con todo contenido en los arreglos definidos en la parte superior, el uso de memoria del solucionador real es de aproximadamente 216kB. La parte principal del uso de la memoria proviene de la matriz que contiene todos los rompecabezas y los controladores de E / S en Java.

EDITAR : Tengo una versión que está traducida a C ++ ahora, pero no es mucho más rápida. El tiempo oficial es de alrededor de 3,5 segundos, lo que no es una gran mejora. Creo que el problema principal con mi implementación es que mantengo mis máscaras como matrices en lugar de máscaras de bits. Intentaré analizar la solución de Arnauld para ver qué se puede hacer para mejorarla.

import java.util.HashMap;
import java.util.ArrayList;
import java.util.Arrays;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.File;
import java.io.PrintWriter;

public class Sudoku {   

    final private int[] unsolvedBoard;
    final private int[] solvedBoard; 
    final private int[][] neighbors;
    final private int[][] cells;

    private static int[] clues;
    final private int[][] mask;
    final private int[] formattedMask;
    final private int[][] placedMask;
    final private boolean[][][] lineMask;
    final private int[] lineCounters;
    final private int[][] sectionCounters;
    final private int[][] sectionMask;

    private int easySolved;
    private boolean isEasy;
    private int totEasy;
    private int placedNumbers;
    public long totTime = 0;
    private boolean solutionFound;
    public long lastPrint;
    private boolean shouldPrint;
    private boolean isImpossible = false;

    public Sudoku() {
        mask = new int[81][9];
        formattedMask = new int[81];
        placedMask = new int[64][64];
        lineMask = new boolean[64][81][9];
        sectionCounters = new int[9][27];
        sectionMask = new int[9][27];
        lineCounters = new int[64];
        neighbors = new int[81][20];
        unsolvedBoard = new int[81];
        solvedBoard = new int[81];
        cells = new int[][] {{0 ,1 ,2 ,9 ,10,11,18,19,20},
                             {3 ,4 ,5 ,12,13,14,21,22,23},
                             {6 ,7 ,8 ,15,16,17,24,25,26},
                             {27,28,29,36,37,38,45,46,47},
                             {30,31,32,39,40,41,48,49,50},
                             {33,34,35,42,43,44,51,52,53},
                             {54,55,56,63,64,65,72,73,74},
                             {57,58,59,66,67,68,75,76,77},
                             {60,61,62,69,70,71,78,79,80}};
    }

    final public long solveSudoku(int[] board, int clue) {

        long t1 = 0,t2 = 0;
        t1 = System.nanoTime();
        System.arraycopy(board, 0, unsolvedBoard, 0, 81);
        System.arraycopy(board, 0, solvedBoard, 0, 81);

        placedNumbers = 0;
        solutionFound = false;
        isEasy = true;
        isImpossible = false;

        for (int[] i : mask) {
            Arrays.fill(i, 0);
        }

        for (boolean[][] i : lineMask) {
            for (boolean[] j : i) {
                Arrays.fill(j, false);
            }
        }

        for (int i = 0; i < 81; i++) {
            if (solvedBoard[i] != -1) {
                put(i, solvedBoard[i]);
                placedNumbers++;
            }
        }

        solve(0, 0);
        t2 = System.nanoTime();
        easySolved += isEasy ? 1 : 0;

        if (solutionFound && placedNumbers == 81) {
            totTime += t2-t1;
            if (shouldPrint || t2-t1 > 5*1_000_000_000L) {
                System.out.print(String.format(
                    "Solution from %2d clues found in %7s", 
                    clue, 
                    printTime(t1, t2)
                ));
                shouldPrint = false;
                if (t2-t1 > 1*1000_000_000L) {
                    System.out.println();
                    display2(board, solvedBoard);
                }
            }
        } else {
            System.out.println("No solution");
            display2(unsolvedBoard, solvedBoard);
            return -1;
        }
        return t2 - t1;
    }

    final private void solve(int v, int vIndex) {

        lineCounters[vIndex] = 0;
        int easyIndex = placeEasy(vIndex);

        if (isImpossible) {
            resetEasy(vIndex, easyIndex);
            resetLineMask(vIndex);
            return;
        }

        if (placedNumbers == 81) {
            solutionFound = true;
            return;
        }
        // if (true) {
            // return;
        // }

        // either get the next empty cell
        // while (v < 81 && solvedBoard[v] >= 0) {
            // v++;
        // }
        // or get the cell with the fewest options
        generateFormattedMasks();
        int minOptions = 9;
        for (int i = 0; i < 81; i++) {
            int options = formattedMask[i] & 0xffff;
            if (options > 0 && options < minOptions) {
                minOptions = options;
                v = i;
            }
            if (options == 0 && solvedBoard[i] == -1) {
                isImpossible = true;
            }
        }
        if (!isImpossible) {
            for (int c = 0; c < 9; c++) {
                if (isPossible(v, c)) {
                    isEasy = false;
                    put(v, c);
                    placedNumbers++;
                    solve(v + 1, vIndex + 1); 
                    if (solutionFound) {
                        return;
                    }
                    unput(v, c);
                    placedNumbers--;
                }
            }
        }
        resetEasy(vIndex, easyIndex);
        resetLineMask(vIndex);
    }

    final private void resetEasy(int vIndex, int easyIndex) {
        for (int i = 0; i < easyIndex; i++) {
            int tempv2 = placedMask[vIndex][i];
            int c2 = solvedBoard[tempv2];
            unput(tempv2, c2);
            placedNumbers--;
        }
    }

    final private void resetLineMask(int vIndex) {
        if (lineCounters[vIndex] > 0) {
            for (int i = 0; i < 81; i++) {
                for (int c = 0; c < 9; c++) {
                    if (lineMask[vIndex][i][c]) {
                        enable(i, c);
                        lineMask[vIndex][i][c] = false;
                    }
                }
            }
        }       
        isImpossible = false;
    }

    final private int placeEasy(int vIndex) {
        int easyIndex = 0;
        int lastPlaced = 0, tempPlaced = 0, easyplaced = 0;
        int iter = 0;
        while (placedNumbers > lastPlaced+1) {
            lastPlaced = placedNumbers;
            tempPlaced = 0;
            while (placedNumbers > tempPlaced + 5) {
                tempPlaced = placedNumbers;
                easyIndex = placeNakedSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            tempPlaced = 0;
            while (placedNumbers < 55*1 && placedNumbers > tempPlaced + 2) {
                tempPlaced = placedNumbers;
                easyIndex = placeHiddenSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            tempPlaced = 0;
            while (placedNumbers < 65*1 && placedNumbers > tempPlaced + 1) {
                tempPlaced = placedNumbers;
                easyIndex = placeNakedSingles(vIndex, easyIndex);
                if (isImpossible) {
                    return easyIndex;
                }
            }

            if (iter < 2 && placedNumbers < 55*1) {
                checkNakedTriples(vIndex);
            }
            if (placedNumbers < 45*1) {
                checkNakedDoubles(vIndex);
                identifyLines(vIndex);
            }
            iter++;
        }
        return easyIndex;
    }

    final private int placeNakedSingles(int vIndex, int easyIndex) {
        generateFormattedMasks();
        for (int tempv = 0; tempv < 81; tempv++) {
            int possibilities = formattedMask[tempv];
            if ((possibilities & 0xffff) == 1) {
                possibilities >>= 16;
                int c = 0;
                while ((possibilities & 1) == 0) {
                    possibilities >>= 1;
                    c++;
                }
                if (isPossible(tempv, c)) {
                    put(tempv, c);
                    placedMask[vIndex][easyIndex++] = tempv;
                    placedNumbers++;
                } else {
                    isImpossible = true;
                    return easyIndex;
                }
            } else if (possibilities == 0 && solvedBoard[tempv] == -1) {
                isImpossible = true;
                return easyIndex;
            }
        }
        return easyIndex;
    }


    final private int placeHiddenSingles(int vIndex, int easyIndex) {
        for (int[] i : sectionCounters) {
            Arrays.fill(i, 0);
        }

        for (int c = 0; c < 9; c++) {
            for (int v = 0; v < 81; v++) {
                if (isPossible(v, c)) {
                    int cell = 3 * (v / 27) + ((v / 3) % 3);
                    sectionCounters[c][v / 9]++;
                    sectionCounters[c][9 + (v % 9)]++;
                    sectionCounters[c][18 + cell]++;
                    sectionMask[c][v / 9] = v;
                    sectionMask[c][9 + (v % 9)] = v;
                    sectionMask[c][18 + cell] = v;
                }
            }

            int v;

            for (int i = 0; i < 9; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        placedNumbers++;
                        int cell = 3 * (v / 27) + ((v / 3) % 3);
                        sectionCounters[c][9 + (v%9)] = 9;
                        sectionCounters[c][18 + cell] = 9;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }

            for (int i = 9; i < 18; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        int cell = 3 * (v / 27) + ((v / 3) % 3);
                        placedNumbers++;
                        sectionCounters[c][18 + cell]++;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }


            for (int i = 18; i < 27; i++) {
                if (sectionCounters[c][i] == 1) {
                    v = sectionMask[c][i];
                    if (isPossible(v, c)) {
                        put(v, c);
                        placedMask[vIndex][easyIndex++] = v;
                        placedNumbers++;
                    } else {
                        isImpossible = true;
                        return easyIndex;
                    }
                }
            }

        }
        return easyIndex;
    }

    final private int getFormattedMask(int v) {
        if (solvedBoard[v] >= 0) {
            return 0;
        }
        int x = 0;
        int y = 0;
        for (int c = 8; c >= 0; c--) {
            x <<= 1;
            x += mask[v][c] == 0 ? 1 : 0;
            y += mask[v][c] == 0 ? 1 : 0;
        }
        x <<= 16;
        return x + y;
    }

    final private int getCachedMask(int v) {
        return formattedMask[v];
    }

    final private void generateFormattedMasks() {
        for (int i = 0; i < 81; i++) {
            formattedMask[i] = getFormattedMask(i);
        }
    }

    final private void generateFormattedMasks(int[] idxs) {
        for (int i : idxs) {
            formattedMask[i] = getFormattedMask(i);
        }
    }


    final private void checkNakedDoubles(int vIndex) {
        generateFormattedMasks();
        for (int i = 0; i < 81; i++) {
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 2) {
                for (int j = i+1; j < (i/9+1)*9; j++) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask == bitmask_j) {
                        bitmask >>= 16;
                        int c0, c1, k = 0;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c0 = k;
                        bitmask >>= 1;
                        k++;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c1 = k;
                        for (int cell = (i/9)*9; cell < (i/9+1)*9; cell++) {
                            if (cell != i && cell != j) {
                                if (!lineMask[vIndex][cell][c0]) {
                                    disable(cell, c0);
                                    lineMask[vIndex][cell][c0] = true;
                                    lineCounters[vIndex]++;
                                }
                                if (!lineMask[vIndex][cell][c1]) {
                                    disable(cell, c1);
                                    lineMask[vIndex][cell][c1] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 81; idx++) {
            int i = (idx%9)*9 + idx/9;
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 2) {
                for (int j = i+9; j < 81; j += 9) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask == bitmask_j) {
                        bitmask >>= 16;
                        int c0, c1, k = 0;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c0 = k;
                        bitmask >>= 1;
                        k++;
                        while ((bitmask & 1) == 0) {
                            k++;
                            bitmask >>= 1;
                        }
                        c1 = k;
                        for (int cell = i % 9; cell < 81; cell += 9) {
                            if (cell != i && cell != j) {
                                if (!lineMask[vIndex][cell][c0]) {
                                    disable(cell, c0);
                                    lineMask[vIndex][cell][c0] = true;
                                    lineCounters[vIndex]++;
                                }
                                if (!lineMask[vIndex][cell][c1]) {
                                    disable(cell, c1);
                                    lineMask[vIndex][cell][c1] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 9; idx++) {
            for (int i = 0; i < 9; i++) {
                int bitmask = formattedMask[cells[idx][i]];
                if ((bitmask & 0xffff) == 2) {
                    for (int j = i+1; j < 9; j++) {
                        int bitmask_j = formattedMask[cells[idx][j]];
                        if (bitmask == bitmask_j) {
                            bitmask >>= 16;
                            int c0, c1, k = 0;
                            while ((bitmask & 1) == 0) {
                                k++;
                                bitmask >>= 1;
                            }
                            c0 = k;
                            bitmask >>= 1;
                            k++;
                            while ((bitmask & 1) == 0) {
                                k++;
                                bitmask >>= 1;
                            }
                            c1 = k;
                            for (int cellIdx = 0; cellIdx < 9; cellIdx++) {
                                if (cellIdx != i && cellIdx != j) {
                                    int cell = cells[idx][cellIdx];
                                    if (!lineMask[vIndex][cell][c0]) {
                                        disable(cell, c0);
                                        lineMask[vIndex][cell][c0] = true;
                                        lineCounters[vIndex]++;
                                    }
                                    if (!lineMask[vIndex][cell][c1]) {
                                        disable(cell, c1);
                                        lineMask[vIndex][cell][c1] = true;
                                        lineCounters[vIndex]++;
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    final private void checkNakedTriples(int vIndex) {

        generateFormattedMasks();

        for (int i = 0; i < 81; i++) {
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 3) {
                for (int j = i+1; j < (i/9+1)*9; j++) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                        for (int k = j+1; k < (i/9+1)*9; k++) {
                            int bitmask_k = formattedMask[k];
                            if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                int bitmask_shifted = bitmask >> 16;
                                int c0, c1, c2, l = 0;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c0 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c1 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c2 = l;
                                for (int cell = (i/9)*9; cell < (i/9+1)*9; cell++) {
                                    if (cell != i && cell != j && cell != k) {
                                        if (!lineMask[vIndex][cell][c0]) {
                                            disable(cell, c0);
                                            lineMask[vIndex][cell][c0] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c1]) {
                                            disable(cell, c1);
                                            lineMask[vIndex][cell][c1] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c2]) {
                                            disable(cell, c2);
                                            lineMask[vIndex][cell][c2] = true;
                                            lineCounters[vIndex]++;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 81; idx++) {
            int i = (idx%9)*9 + idx/9;
            int bitmask = formattedMask[i];
            if ((bitmask & 0xffff) == 3) {
                for (int j = i+9; j < 81; j += 9) {
                    int bitmask_j = formattedMask[j];
                    if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                        for (int k = j+9; k < 81; k += 9) {
                            int bitmask_k = formattedMask[k];
                            if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                int bitmask_shifted = bitmask >> 16;
                                int c0, c1, c2, l = 0;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c0 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c1 = l;
                                bitmask_shifted >>= 1;
                                l++;
                                while ((bitmask_shifted & 1) == 0) {
                                    l++;
                                    bitmask_shifted >>= 1;
                                }
                                c2 = l;
                                for (int cell = i%9; cell < 81; cell += 9) {
                                    if (cell != i && cell != j && cell != k) {
                                        if (!lineMask[vIndex][cell][c0]) {
                                            disable(cell, c0);
                                            lineMask[vIndex][cell][c0] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c1]) {
                                            disable(cell, c1);
                                            lineMask[vIndex][cell][c1] = true;
                                            lineCounters[vIndex]++;
                                        }
                                        if (!lineMask[vIndex][cell][c2]) {
                                            disable(cell, c2);
                                            lineMask[vIndex][cell][c2] = true;
                                            lineCounters[vIndex]++;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

        for (int idx = 0; idx < 9; idx++) {
            for (int i = 0; i < 9; i++) {
                int bitmask = formattedMask[cells[idx][i]];
                if ((bitmask & 0xffff) == 3) {
                    for (int j = i+1; j < 9; j++) {
                        int bitmask_j = formattedMask[cells[idx][j]];
                        if (bitmask_j > 0 && bitmask == (bitmask | bitmask_j)) {
                            for (int k = j+1; k < 9; k++) {
                                int bitmask_k = formattedMask[cells[idx][k]];
                                if (bitmask_k > 0 && bitmask == (bitmask | bitmask_k)) {

                                    int bitmask_shifted = bitmask >> 16;
                                    int c0, c1, c2, l = 0;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c0 = l;
                                    bitmask_shifted >>= 1;
                                    l++;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c1 = l;
                                    bitmask_shifted >>= 1;
                                    l++;
                                    while ((bitmask_shifted & 1) == 0) {
                                        l++;
                                        bitmask_shifted >>= 1;
                                    }
                                    c2 = l;
                                    for (int cellIdx = 0; cellIdx < 9; cellIdx++) {
                                        if (cellIdx != i && cellIdx != j && cellIdx != k) {
                                            int cell = cells[idx][cellIdx];
                                            if (!lineMask[vIndex][cell][c0]) {
                                                disable(cell, c0);
                                                lineMask[vIndex][cell][c0] = true;
                                                lineCounters[vIndex]++;
                                            }
                                            if (!lineMask[vIndex][cell][c1]) {
                                                disable(cell, c1);
                                                lineMask[vIndex][cell][c1] = true;
                                                lineCounters[vIndex]++;
                                            }
                                            if (!lineMask[vIndex][cell][c2]) {
                                                disable(cell, c2);
                                                lineMask[vIndex][cell][c2] = true;
                                                lineCounters[vIndex]++;
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }

    }

    final private void identifyLines(int vIndex) {

        int disabledLines = 0;
        int[][] tempRowMask = new int[3][9];
        int[][] tempColMask = new int[3][9];
        for (int i = 0; i < 9; i++) {
            for (int c = 0; c < 9; c++) {
                for (int j = 0; j < 3; j++) {
                    tempRowMask[j][c] = 0;
                    tempColMask[j][c] = 0;
                }
                for (int j = 0; j < 9; j++) {
                    if (mask[cells[i][j]][c] == 0) {
                        tempRowMask[j/3][c]++;
                        tempColMask[j%3][c]++;
                    }
                }

                int rowCount = 0;
                int colCount = 0;
                int rowIdx = -1, colIdx = -1;
                for (int j = 0; j < 3; j++) {
                    if (tempRowMask[j][c] > 0) {
                        rowCount++;
                        rowIdx = j;
                    }
                    if (tempColMask[j][c] > 0) {
                        colCount++;
                        colIdx = j;
                    }
                }
                if (rowCount == 1) {
                    for (int j = (i/3)*3; j < (i/3 + 1)*3; j++) {
                        if (j != i) {
                            for (int k = rowIdx*3; k < (rowIdx+1)*3; k++) {
                                int cell = cells[j][k];
                                if (!lineMask[vIndex][cell][c]) {
                                    disable(cell, c);
                                    lineMask[vIndex][cell][c] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }

                }
                if (colCount == 1) {
                    for (int j = i % 3; j < 9; j += 3) {
                        if (j != i) {
                            for (int k = colIdx; k < 9; k += 3) {
                                int cell = cells[j][k];
                                if (!lineMask[vIndex][cell][c]) {
                                    disable(cell, c);
                                    lineMask[vIndex][cell][c] = true;
                                    lineCounters[vIndex]++;
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    final private boolean isPossible(int v, int c) {
        return mask[v][c] == 0;
    }

    final private int checkMask(int[][] neighbors, int v, int c) {
        int tempValue = 0;
        for (int n : neighbors[v]) {
            if (mask[n][c] > 0) {
                tempValue++;
            }
        }
        return tempValue;
    }

    final private void put(int v, int c) {
        solvedBoard[v] = c;
        for (int i : neighbors[v]) {
            mask[i][c]++;
        }
        for (int i = 0; i < 9; i++) {
            mask[v][i]++;
        }
    }

    final private void disable(int v, int c) {
        mask[v][c]++;
    }

    final private void unput(int v, int c) {
        solvedBoard[v] = -1;
        for (int i : neighbors[v]) {
            mask[i][c]--;
        }
        for (int i = 0; i < 9; i++) {
            mask[v][i]--;
        }       
    }

    final private void enable(int v, int c) {
        // enables++;
        mask[v][c]--;
    }

    public String getString(int[] board) {
        StringBuilder s = new StringBuilder();
        for (int i : board) {
            s.append(i+1);
        }
        return s.toString();
    }

    public long getTime() {
        return totTime;
    }

    public static String printTime(long t1, long t2) {
        String unit = " ns";
        if (t2-t1 > 10000) {
            unit = " us";
            t1 /= 1000; t2 /= 1000;
        }
        if (t2-t1 > 10000) {
            unit = " ms";
            t1 /= 1000; t2 /= 1000;
        }
        if (t2-t1 > 10000) {
            unit = " seconds";
            t1 /= 1000; t2 /= 1000;
        }
        return (t2-t1) + unit;
    }

    public void display(int[] board) {

        for (int i = 0; i < 9; i++) {
            if (i % 3 == 0) {
                System.out.println("+-----+-----+-----+");
            }
            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (board[i*9+j] != -1) {
                    System.out.print(board[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }
            System.out.println("|");
        }
        System.out.println("+-----+-----+-----+");
    }

    public void display2(int[] board, int[] solved) {

        for (int i = 0; i < 9; i++) {
            if (i % 3 == 0) {
                System.out.println("+-----+-----+-----+  +-----+-----+-----+");
            }
            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (board[i*9+j] != -1) {
                    System.out.print(board[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }

            System.out.print("|  ");

            for (int j = 0; j < 9; j++) {
                if (j % 3 == 0) {
                    System.out.print("|");
                } else {
                    System.out.print(" ");
                }
                if (solved[i*9+j] != -1) {
                    System.out.print(solved[i*9+j]+1);
                } else {
                    System.out.print(" ");
                }
            }

            System.out.println("|");
        }
        System.out.println("+-----+-----+-----+  +-----+-----+-----+");
    }

    private boolean contains(int[] a, int v) {
        for (int i : a) {
            if (i == v) {
                return true;
            }
        }
        return false;
    }

    public void connect() {
        for (int i = 0; i < 81; i++) {
            for (int j = 0; j < 20; j++) {
                neighbors[i][j] = -1;
            }
        }
        int[] n_count = new int[81];

        HashMap<Integer,ArrayList<Integer>> map 
            = new HashMap<Integer,ArrayList<Integer>>();

        for (int[] c: cells) {
            ArrayList<Integer> temp = new ArrayList<Integer>();
            for (int v : c) {
                temp.add(v);
            }
            for (int v : c) {
                map.put(v,temp);
            }
        }

        for (int i = 0; i < 81; i++) {
            for (int j = (i/9)*9; j < (i/9)*9 + 9; j++) {
                if (i != j) {
                    neighbors[i][n_count[i]++] = j;
                }
            }
            for (int j = i%9; j < 81; j += 9) {
                if (i != j) {
                    neighbors[i][n_count[i]++] = j;
                }
            }
            for (int j : map.get(i)) {
                if (i != j) {
                    if (!contains(neighbors[i], j)) {
                        neighbors[i][n_count[i]++] = j;
                    }
                }
            }
        }
    }

    public static int[][] getInput(String filename) {
        int[][] boards;
        try (BufferedInputStream in = new BufferedInputStream(
            new FileInputStream(filename))) {

            BufferedReader r = new BufferedReader(
                new InputStreamReader(in, StandardCharsets.UTF_8));
            int n = Integer.valueOf(r.readLine());
            boards = new int[n][81];
            clues = new int[n];
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < 81; j++) {
                    int x = r.read();
                    boards[i][j] = x - 49;
                    clues[i] += x > 48 ? 1 : 0;
                }
                r.read();
            }
            r.close();
        } catch (IOException ex) {
            throw new RuntimeException(ex);
        }
        return boards;
    }

    private int getTotEasy() {
        return totEasy;
    }

    public String getSolution() {
        StringBuilder s = new StringBuilder(256);
        for (int i : unsolvedBoard) {
            s.append(i+1);
        }
        s.append(",");
        for (int i : solvedBoard) {
            s.append(i+1);
        }
        return s.toString();
    }

    public static void main (String[] args) {
        long t0 = System.nanoTime();
        Sudoku gc = new Sudoku();
        File f;
        PrintWriter p;
        try {
            f = new File("sudoku_output.txt");
            p = new PrintWriter(f);
        } catch (Exception e) {
            return;
        }
        if (args.length != 1) {
            System.out.println("Usage: java Sudoku <input_file>");
            return;
        }
        int[][] boards = gc.getInput(args[0]);
        long tinp = System.nanoTime();
        gc.connect();
        long t1 = System.nanoTime();
        p.println(boards.length);

        long maxSolveTime = 0;
        int maxSolveIndex = 0;
        long[] solveTimes = new long[boards.length];
        for (int i = 0; i < boards.length; i++) {
            long tempTime = System.nanoTime();
            if (tempTime - gc.lastPrint > 200_000_000 
                || i == boards.length - 1) {

                gc.shouldPrint = true;
                gc.lastPrint = tempTime;
                System.out.print(String.format(
                    "\r(%7d/%7d) ", i+1, boards.length));
            }
            long elapsed = gc.solveSudoku(boards[i], gc.clues[i]);
            if (elapsed == -1) {
                System.out.println("Impossible: " + i);
            }
            if (elapsed > maxSolveTime) {
                maxSolveTime = elapsed;
                maxSolveIndex = i;
            }
            solveTimes[i] = elapsed;
            p.println(gc.getSolution());
            // break;
        }

        p.close();
        long t2 = System.nanoTime();
        Arrays.sort(solveTimes);
        System.out.println();
        System.out.println("Median solve time: " 
            + gc.printTime(0, solveTimes[boards.length/2]));
        System.out.println("Longest solve time: " 
            + gc.printTime(0, maxSolveTime) + " for board " + maxSolveIndex);
        gc.display(boards[maxSolveIndex]);
        System.out.println();

        System.out.println("Total time (including prints): " 
            + gc.printTime(t0,t2));
        System.out.println("Sudoku solving time: " 
            + gc.printTime(0,gc.getTime()));
        System.out.println("Average time per board: " 
            + gc.printTime(0,gc.getTime()/boards.length));
        System.out.println("Number of one-choice digits per board: " 
            + String.format("%.2f", gc.getTotEasy()/(double)boards.length));  
        System.out.println("Easily solvable boards: " + gc.easySolved);
        System.out.println("\nInput time: " + gc.printTime(t0,tinp));
        System.out.println("Connect time: " + gc.printTime(tinp,t1));
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {

        }
    }
}
maxb
fuente
No me equivoco, debería ahorrar algo de tiempo traduciendo esas matrices irregulares en matrices 2D.
CSharpie
2

C ++ con Minisat (2.2.1-5) - puntaje oficial de 11.735

Esto no es tan rápido como un algoritmo especializado, pero es un enfoque diferente, un punto de referencia interesante y fácil de entender.

$ clang ++ -o resolver -lminisat solver_minisat.cc

#include <minisat/core/Solver.h>

namespace {

using Minisat::Lit;
using Minisat::mkLit;
using namespace std;

struct SolverMiniSat {
    Minisat::Solver solver;

    SolverMiniSat() {
        InitializeVariables();
        InitializeTriadDefinitions();
        InitializeTriadOnnes();
        InitializeCellOnnes();
    }

    // normal cell literals, of which we have 9*9*9
    static Lit Literal(int row, int column, int value) {
        return mkLit(value + 9 * (column + 9 * row), true);
    }

    // horizontal triad literals, of which we have 9*3*9, starting after the cell literals
    static Lit HTriadLiteral(int row, int column, int value) {
        int base = 81 * 9;
        return mkLit(base + value + 9 * (column + 3 * row));
    }

    // vertical triad literals, of which we have 3*9*9, starting after the h_triad literals
    static Lit VTriadLiteral(int row, int column, int value) {
        int base = (81 + 27) * 9;
        return mkLit(base + value + 9 * (row + 3 * column));
    }

    void InitializeVariables() {
        for (int i = 0; i < 15 * 9 * 9; i++) {
            solver.newVar();
        }
    }

    // create an exactly-one constraint over a set of literals
    void CreateOnne(const Minisat::vec<Minisat::Lit> &literals) {
        solver.addClause(literals);
        for (int i = 0; i < literals.size() - 1; i++) {
            for (int j = i + 1; j < literals.size(); j++) {
                solver.addClause(~literals[i], ~literals[j]);
            }
        }
    }

    void InitializeTriadDefinitions() {
        for (int i = 0; i < 9; i++) {
            for (int j = 0; j < 3; j++) {
                for (int value = 0; value < 9; value++) {
                    Lit h_triad = HTriadLiteral(i, j, value);
                    Lit v_triad = VTriadLiteral(j, i, value);
                    int j0 = j * 3 + 0, j1 = j * 3 + 1, j2 = j * 3 + 2;

                    Minisat::vec<Minisat::Lit> h_triad_def;
                    h_triad_def.push(Literal(i, j0, value));
                    h_triad_def.push(Literal(i, j1, value));
                    h_triad_def.push(Literal(i, j2, value));
                    h_triad_def.push(~h_triad);
                    CreateOnne(h_triad_def);

                    Minisat::vec<Minisat::Lit> v_triad_def;
                    v_triad_def.push(Literal(j0, i, value));
                    v_triad_def.push(Literal(j1, i, value));
                    v_triad_def.push(Literal(j2, i, value));
                    v_triad_def.push(~v_triad);
                    CreateOnne(v_triad_def);
                }
            }
        }
    }

    void InitializeTriadOnnes() {
        for (int i = 0; i < 9; i++) {
            for (int value = 0; value < 9; value++) {
                Minisat::vec<Minisat::Lit> row;
                row.push(HTriadLiteral(i, 0, value));
                row.push(HTriadLiteral(i, 1, value));
                row.push(HTriadLiteral(i, 2, value));
                CreateOnne(row);

                Minisat::vec<Minisat::Lit> column;
                column.push(VTriadLiteral(0, i, value));
                column.push(VTriadLiteral(1, i, value));
                column.push(VTriadLiteral(2, i, value));
                CreateOnne(column);

                Minisat::vec<Minisat::Lit> hbox;
                hbox.push(HTriadLiteral(3 * (i / 3) + 0, i % 3, value));
                hbox.push(HTriadLiteral(3 * (i / 3) + 1, i % 3, value));
                hbox.push(HTriadLiteral(3 * (i / 3) + 2, i % 3, value));
                CreateOnne(hbox);

                Minisat::vec<Minisat::Lit> vbox;
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 0, value));
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 1, value));
                vbox.push(VTriadLiteral(i % 3, 3 * (i / 3) + 2, value));
                CreateOnne(vbox);
            }
        }
    }

    void InitializeCellOnnes() {
        for (int row = 0; row < 9; row++) {
            for (int column = 0; column < 9; column++) {
                Minisat::vec<Minisat::Lit> literals;
                for (int value = 0; value < 9; value++) {
                    literals.push(Literal(row, column, value));
                }
                CreateOnne(literals);
            }
        }
    }

    bool SolveSudoku(const char *input, char *solution, size_t *num_guesses) {
        Minisat::vec<Minisat::Lit> assumptions;
        for (int row = 0; row < 9; row++) {
            for (int column = 0; column < 9; column++) {
                char digit = input[row * 9 + column];
                if (digit != '.') {
                    assumptions.push(Literal(row, column, digit - '1'));
                }
            }
        }
        solver.decisions = 0;
        bool satisfied = solver.solve(assumptions);
        if (satisfied) {
            for (int row = 0; row < 9; row++) {
                for (int column = 0; column < 9; column++) {
                    for (int value = 0; value < 9; value++) {
                        if (solver.model[value + 9 * (column + 9 * row)] ==
                            Minisat::lbool((uint8_t) 1)) {
                            solution[row * 9 + column] = value + '1';
                        }
                    }
                }
            }
        }
        *num_guesses = solver.decisions - 1;
        return satisfied;
    }
};

} //end anonymous namespace

int main(int argc, const char **argv) {
    char *puzzle = NULL;
    char solution[81];
    size_t size, guesses;

    SolverMiniSat solver;

    while (getline(&puzzle, &size, stdin) != -1) {
        int count = solver.SolveSudoku(puzzle, solution, &guesses);
        printf("%.81s:%d:%.81s\n", puzzle, count, solution);
    }
}
53x15
fuente