¿Cuántos tres?

16

En esta tarea, su código recibirá un número entero norte como entrada. Su código debería generar el mayor número de múltiplos de 3 que se pueden concatenar (en base ) para formar (sin ceros a la izquierda). Por ejemplo, si le dieron como entrada,103n26042

26042×3=78126

y se pueden hacer concatenando , y , por lo que da salida .78126781263

Cualquier forma estándar de IO está permitida. Las respuestas deben apuntar a minimizar el número de bytes en su código.


Aquí están las primeras 6562 entradas en esta secuencia que comienzan con cero:

1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2
Post Rock Garf Hunter
fuente
8
Sería genial tener algunos ejemplos en el formulario n -> f(n), ¿dónde f(n)está la respuesta? Tal como está ahora, ni siquiera puedo decir si sus entradas 6561 están indexadas a 0 o indexadas a 1.
maxb
@maxb Hay demasiados ejemplos para hacer ese formato. Mi lista está indexada a cero.
Post Rock Garf Hunter
2
Por supuesto, pero algunos selectos serían geniales, además del primer ejemplo. Y por lo que puedo ver, se nos permite dividir el número ninguna manera queremos? Entonces, ¿se requeriría una implementación de fuerza bruta (en algunos idiomas) para encontrar el número máximo de múltiplos de 3? Además, ¿define 0 como un múltiplo de 3? De su pregunta parece que sí. 3n
maxb
@maxb Hay dos trucos que se pueden usar para obtener soluciones de manera más corta y rápida. (pista 3 es especial) y sí 0 es un múltiplo de 3. No sé cómo podría ser.
Post Rock Garf Hunter

Respuestas:

9

Haskell , 51 bytes

f n=sum[1|x<-scanr(:)"0".show$3*n,read x`mod`3<1]-1

Pruébalo en línea!

La idea clave es la siguiente: dado un múltiplo de 3 (llámelo 3n ), la mejor manera de escribirlo como la yuxtaposición de múltiplos de 3 es comenzar desde el final (o el principio) y seleccionar múltiples de 3 con avidez. Por ejemplo, si 3n=78126 , obtenemos (comenzando desde el final) un 6 , luego un 12 y finalmente un 78 : 78|12|6 . Tenga en cuenta que esto es posible porque un número es un múltiplo de 3 si la suma de sus dígitos es un múltiplo de 3. También tenga en cuenta que si concatenamos dos múltiplos de 3, obtenemos otro múltiplo de 3, entonces 6,12|6,78|12|6 son todos múltiplos de 3.

Por lo tanto, la respuesta se puede encontrar considerando la lista de sufijos de 3n (por ejemplo, [78126,8126,126,26,6] ) y contando los múltiplos de 3.

Delfad0r
fuente
9

Retina , 11 bytes de latín-1

v`.3*[012¶]

Pruébalo en línea!

La retina funciona en cadenas en lugar de números enteros, por lo que estoy tomando el número como aparecería en un archivo (dígitos seguidos de una nueva línea).

Algoritmo

Casi todas las soluciones aquí tienen una multiplicación por 3, pero pensé que sería interesante tratar de resolver el problema sin él. Ya sabemos por el algoritmo que la mayoría de la gente está usando que necesitamos identificar el número de sufijos de 3 n que son divisibles por 3. Ahora, dado un sufijo de n (digamos s ), 3 s aparecerá como un sufijo de 3 n si la multiplicación s × 3 no se lleva al dígito anterior al sufijo. Mientras tanto, si la multiplicación s × 3 hace carry, entonces el correspondiente sufijo de 3 nno será divisible por 3 (ya que la raíz digital de 3 * s * es divisible por 3 - 3 divide (10-1) y estamos trabajando en la base 10 - y el sufijo correspondiente de 3 * n * será igual a 3 * s * pero sin un líder 1o 2, ninguno de los cuales es divisible por 3).

Necesitamos ajustar la posibilidad de que 3 * n * tenga más dígitos que n , lo que significa que 3 * n * tiene un sufijo adicional que no corresponde a ningún sufijo de n . Este sufijo es trivialmente el número entero 3 * n *, y siempre será divisible por 3 (por razones obvias). Por lo tanto, si la multiplicación n × 3 lleva, tenemos que sumar 1 al resultado. Podemos notar que si n × 3 no lleva, contribuirá 1 al resultado usando un algoritmo ingenuo, mientras que si lo hace, no lo hará; y así podemos hacer este ajuste simplemente contando el "sufijo que representa el número entero n " incondicionalmente, en lugar de verificar un carry. De manera equivalente (y un poco más concisamente), nosotros incondicional puede no cuente este sufijo y cuente algún otro sufijo en su lugar (el sufijo vacío es conveniente), ya que llegará al mismo total.

¿Cómo determinamos si una multiplicación por 3 llevaría? Bueno, si el primer dígito del número es mayor que 3, debe; si es menos de 3, no puede. Si es 3, si lleva o no dependerá del siguiente dígito del número de la misma manera. Si el número consiste completamente en 3s, la multiplicación no se realizará (se detendrá solo en un número que consiste completamente en 9s). Por lo tanto, el algoritmo que queremos es "contar el número de sufijos adecuados que comienzan con 0 o más 3s, seguidos de 0, 1, 2 o el final de la cadena; más un sufijo adicional".

Explicación

Este algoritmo termina más tiempo que el algoritmo de consenso en la mayoría de los idiomas, por lo que lo envío en Retina, un idioma en el que resulta ser más corto que el método más habitual (y una longitud similar a los idiomas de golf).

v`.3*[012¶]
v`            {Count the number of} points within the input from which you can
  .             ignore one character,
   3*           and skip past any number (including zero) of 3s,
     [012¶]     to find 0, 1, 2, or the newline at the end of the input.

El requisito de ignorar un carácter antes de comenzar a buscar significa que no se puede contar el sufijo incorrecto que consiste en el número entero (ya que los sufijos que realmente vemos serán los que comienzan un carácter a la derecha de donde comienza Retina, y por lo tanto no en el primer personaje). Sin embargo, el sufijo incorrecto que consiste solo en la nueva línea al final del número siempre se contará, lo que nos dará el sufijo adicional que necesitamos.

ais523
fuente
Este fue el algoritmo que tenía en mente cuando escribí la pregunta. ¡Me alegra ver que alguien lo usó!
Post Rock Garf Hunter
@WW: Esta respuesta fue más un caso de "este es un algoritmo interesante, busquemos un lenguaje eficiente" que "este es un lenguaje interesante, encontremos el mejor algoritmo". (¡Aunque Retina es un idioma interesante de todos modos, como sucede!) Supongo que este es un extraño efecto secundario de la "competencia por idioma"; significa que puede hacer que una respuesta sea "mejor", en cierto sentido, traduciéndola a un idioma que no maneja bien las traducciones de respuestas competitivas.
ais523
Creo que [¶-2]guarda un byte, ya que debería poder asumir que la entrada consta solo de dígitos numéricos y la nueva línea.
FryAmTheEggman
3

Perl 6 , 54 28 bytes

-14 bytes gracias a nwellnhof!

{+grep *%%3,[\~] .comb}o*×3

Pruébalo en línea!

Esto cuenta cuántos prefijos del número por tres son divisibles por 3.

Explicación:

{                     }o*×3  # Pass the input times 3 into the code block
            [\~] .comb   # Get all the prefixes of the number
  grep     , # Filter from that
       *%%3  # All numbers divisible by 3
 +   # Return the length of the list
Jo King
fuente
Afeitado otro byte .
nwellnhof
@nwellnhof No me di cuenta de que se podía combinar con cualquier código. ¡Ordenado!
Jo King
3

05AB1E , 14 12 7 6 bytes

3*η3ÖO

-5 bytes creando un puerto de respuesta Husk de @BMO .
-1 byte gracias a @Nitrodon cambiando los sufijos a prefijos.

Pruébelo en línea o verifique los primeros 1000 artículos .

Explicación:

3*        # Multiply the (implicit) input by 3
          #  i.e. 26042 → 78126
  η       # List of prefixes
          #  i.e. 78126 → ["7","78","781","7812","78126"]
   3Ö     # Check for each if its divisible by 3
          #  i.e. ["7","78","781","7812","78126"] → [0,1,0,1,1]
     O    # And take the sum (which is implicitly output)
          #  i.e. [0,1,0,1,1] → 3

Antigua respuesta de 12 bytes:

3*.œʒ3ÖP}€gà

O alternativamente €gàpuede seréθg .

Pruébelo en línea o verifique los primeros 1000 artículos

Explicación:

3*             # Multiply the (implicit) input by 3
               #  i.e. 26042 → 78126
             # Take all possible partitions of this number
               #  i.e. 78126 → [["7","8","1","2","6"],["7","8","1","26"],["7","8","12","6"],
               #                ...,["781","26"],["7812","6"],["78126"]]
    ʒ   }      # Filter these partitions by:
     3ÖP       #  Only keep partitions where every number is divisible by 3
               #   i.e. ["7","8","1","2","6"] → [0,0,0,0,1] → 0
               #   i.e. ["78","12","6"] → [1,1,1] → 1

               #(option 1:)
         g    # Take the length of each remaining partition
               #  i.e. [["78","12","6"],["78","126"],["7812","6"],["78126"]] → [3,2,2,1]
           à   # And take the max (which we output implicitly)
               #  i.e. [3,2,2,1] → 3

               #(option 2:)
         é     # Sort the remaining partitions by length
               #  i.e. [["78","12","6"],["78","126"],["7812","6"],["78126"]]
               #   → [["78126"],["78","126"],["7812","6"],["78","12","6"]]
          θ    # Take the last one (the longest)
               #  i.e. [["78126"],["78","126"],["7812","6"],["78","12","6"]]
               #   → ["78","12","6"]
           g   # And take its length (which we output implicitly)
               #  i.e. ["78","12","6"] → 3
Kevin Cruijssen
fuente
1
El uso de prefijos en lugar de sufijos da el mismo resultado en un byte menos.
Nitrodon
@Nitrodon ¡Gracias! :) Conocía los prefijos de 1 byte incorporados, pero no me di cuenta de que el desafío funciona al usar prefijos en lugar de sufijos también.
Kevin Cruijssen
2

APL (Dyalog Unicode) , 14 bytes

+/0=3|+\⍎¨⍕3×⎕

Pruébalo en línea! o verificar los primeros 1000

Explicación

+/0=3|+\⍎¨⍕3×⎕
               prompt for input
           3×   multiply by 3
        ⍎¨⍕     convert the number to a vector of digits
      +\        take the cumulative sum
    3|          find each term modulo 3
+/0=            count those that equal 0

Esto funciona porque un número es divisible por tres si y solo si la suma de sus dígitos es divisible por tres

jslip
fuente
2

Haskell , 44 bytes

g.(*3).max 1
g 0=0
g n=0^mod n 3+g(div n 10)

Pruébalo en línea!

Utiliza la observación de Delfad0r de que la salida es el número de sufijos (equivalentemente, prefijos) de 3n que son múltiplos de 3. Este método encuentra los prefijos aritméticamente dividiendo repetidamente el piso por 10 en lugar de usar la representación de cadena. El 0^es una forma aritmética corta para producir 1si el exponente mod n 3es cero, y producir lo 0contrario.

La primera línea es la función principal, que triplica la entrada antes de pasarla a la función auxiliar gque se define de forma recursiva. El max 1es un truco para hacer f(0)1 igual, ya que estamos obligados a manejar cero como la cadena en '0'lugar de la cadena vacía.

xnor
fuente
2

MathGolf , 15 14 bytes

3*▒0\Ƨ_3÷\;]Σ

Pruébalo en línea!

-1 byte gracias a JoKing

Explicación

3*                Multiply the input by 3
  ▒               Convert to a list of digits
   0\             Push a zero and swap the top two elements
     Æ            Execute the next 5 characters for each block
      §           Concatenate
       _          Duplicate
        3÷        Check divisibility by 3 (returns 0 or 1)
          \       Swap top two elements
           ;      Discard TOS (the last swap
            ]Σ    Wrap the entire stack in an array and output its sum

No sé si esta es la solución correcta al problema, pero imita la solución JS de Arnauld. Si soy incorrecto, intentaré solucionarlo.

maxb
fuente
14 bytes
Jo King
@JoKing Tendré que averiguar qué hace su código, luego lo actualizaré con una explicación (sé lo que hace, pero no por qué funciona)
maxb
1

Pyth 16 15 bytes

lef!.E%vT3./`*3

Pruébelo en línea aquí .

lef!.E%vT3./`*3Q   Implicit: Q=eval(input())
                   Trailing Q inferred
            `*3Q   Input * 3
            `      Convert to string
          ./       Take divisions into disjoint substrings
  f                Filter the above using:
       vT            Convert each back to integer
      %  3           Mod 3
    .E               Are any non-0?
   !                 Logical NOT
le                 Take the length of the last value
                   As the substring sets are generated in order of number of 
                   substrings, the last value is guaranteed to be the longest
Sok
fuente
1

Lenguaje de programación Shakespeare , 376 bytes

T.Ajax,.Page,.Act I:x.Scene I:x[Enter Ajax and Page]Ajax:Listen tothy!You be the sum ofthe sum ofyou you you!Scene V:x.Page:You be the sum ofyou the quotient betweena cat the sum ofa cat the remainder of the quotient betweenI the sum ofa big cat a cat!Ajax:You be the quotient betweenyou twice the sum ofa big big cat a cat!Be you nicer zero?If solet usscene V.Page:Open heart

Pruébalo en línea!

Me pregunto si el 1/(1+I/3)truco es mejor que un flujo de control.

usuario202729
fuente
No necesitas las xescenas posteriores. Pruébalo en línea!
Jo King
1

Java 10, 66 bytes

n->{int m=1,r=n<1?1:0;for(n*=3;m<n;m*=10)r+=n%m%3<1?1:0;return r;}

Pruébalo en línea.

Explicación:

Utiliza una combinación de la respuesta Husk de @BMO (comprobando cuántos prefijos son divisibles por 3) y la respuesta JavaScript (ES6) de @Arnauld (multiplicando un entero por 10 cada iteración, y obtiene los prefijos con un módulo de este entero) .

n->{             // Method with integer as both parameter and return-type
  int m=1,       //  Modulo-integer, starting at 1
      r=         //  Result-integer, starting at:
        n<1?     //   If the input is the edge-case 0:
         1       //    Start it at 1
        :        //   Else:
         0;      //    Start it at 0
  for(n*=3;      //  Multiply the input by 3
      m<n;       //  Loop as long as `m` is still smaller than `n`
      m*=10)     //    After every iteration: Multiply `m` by 10
    r+=n%m       //   If `n` modulo-`m` (to get a suffix),
          %3<1?  //   is divisible by 3:
        1        //    Increase the result-sum by 1
       :         //   Else:
        0;       //    Leave the result-sum the same by adding 0
  return r;}     //  Return the result-sum
Kevin Cruijssen
fuente
1

Retina , 35 32 bytes

.+
$.(*3*
Lv$`.+
<$&*->
<(---)*>

Pruébalo en línea! Explicación:

.+
$.(*3*

Multiplica la entrada por 3.

Lv$`.+
<$&*->

Convierte cada sufijo a unario.

<(---)*>

Cuenta los múltiplos de tres.

Neil
fuente
1

Python 2 , 48 bytes

n=input()*3;p=n<1
while n:p+=n%3<1;n/=10
print p

Pruébalo en línea!

Similar a la respuesta de ovs , pero toma todo el prefijo mod 3 sin acumular en lugar del último dígito. Salidas Truecomo 1 en la entrada de 0.


Python 3 , 42 bytes

f=lambda n:n>=1and(n%1<1/3)+f(n/10)or n==0

Pruébalo en línea!

Utiliza ideas de la muy buena solución de ais523 . Repetidamente el piso divide la entrada por 10 hasta que sea cero, y cuenta cuántas veces la parte fraccional es menor que 1/3. En entradas muy grandes, la precisión de flotación eventualmente será un problema. El n=0caso se maneja or n==0haciendo que devuelva True para 1. El código puede funcionar en Python 2 si la entrada es flotante, si reescribimos n%1<1/3como n%1*3<1cuál es la misma longitud.

xnor
fuente
1

Jalea , 7 bytes

×3DÄ3ḍS

Pruébalo en línea!

Cómo funciona

×3DÄ3ḍS  Main link. Argument: n

×3       Compute 3n.
  D      Decimal; convert 3n to the array of its digits in base 10.
   Ä     Accumulate; take the cumulative sum.
         Note that an integer and its digit sum are congruent modulo 3.
    3ḍ   Test each partial digit sum for divisibility by 3.
      S  Take the sum of the Booleans, counting the multiples of 3.
Dennis
fuente
0

Stax , 8 bytes

αNΘ╠╠1d}

Ejecutar y depurarlo

Desempaquetado, sin golf y comentado, se ve así.

3*      triple input
E       convert to array of decimal digits
:+      get all prefix sums
F       for each prefix sum
  3%!   is it a multiple of 3?
  +     add to running total

Ejecute este

recursivo
fuente